18.06 Problem Set 8

Due Wednesday, 22 April 2009 at 4pm in 2-106.

1. If A is real-symmetric, it has real eigenvalues. What can you say about the eigenvalues if A is real and anti-symmetric $\left(A=-A^{T}\right)$? Give both a general explanation for any $n \times n A$ (similar to what we did in class and in the book) and check by finding the eigenvalues a 2×2 anti-symmetric example matrix.
2. Find an orthogonal matrix Q that diagonalizes $A=\left(\begin{array}{cc}-2 & 6 \\ 6 & 7\end{array}\right)$, i.e. so that $Q^{T} A Q=\Lambda$ where Λ is diagonal. What is Λ ?
3. Even if the real matrix A is rectangular, the block matrix $B=\left(\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right)$ is symmetric. An eigenvector \mathbf{x} of B satisfies $B \mathbf{x}=\lambda \mathbf{x}$ with:

$$
\mathbf{x}=\binom{\mathbf{y}}{\mathbf{z}}, \quad\left(\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right)\binom{\mathbf{y}}{\mathbf{z}}=\lambda\binom{\mathbf{y}}{\mathbf{z}}
$$

and thus $A \mathbf{z}=\lambda \mathbf{y}$ and $A^{T} \mathbf{y}=\lambda \mathbf{z}$.
(a) Show that $-\lambda$ is also an eigenvalue of B, with the eigenvector $(\mathbf{y},-\mathbf{z})$.
(b) Show that $A^{T} A \mathbf{z}=\lambda^{2} \mathbf{z}$, so that λ^{2} is an eigenvalue of $A^{T} A$.
(c) Show that λ^{2} is also an eigenvalue of $A A^{T}$ by finding a corresponding eigenvector.
(d) If $A=I(2 \times 2)$, find all four eigenvalues and eigenvectors of B.
4. True or false (give a reason if true, or a counter-example if false).
(a) A matrix with real eigenvalues and real eigenvectors is symmetric.
(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
(c) The inverse of a symmetric matrix is symmetric.
(d) The eigenvector matrix S of a symmetrix matrix is symmetric.
(e) A complex symmetric matrix has real eigenvalues.
(f) If A is symmetric, then $e^{i A}$ is symmetric.
(g) If A is Hermitian, then $e^{i A}$ is Hermitian.
5. For which s is A positive definite?

$$
A=\left(\begin{array}{ccc}
s & -4 & -4 \\
-4 & s & -4 \\
-4 & -4 & s
\end{array}\right)
$$

6. If A has full column rank, and C is positive-definite, show that $A^{T} C A$ is positive definite. (Recall that $A^{T} C A$ is an important matrix; for example, it arose in lecture 13 on graphs and networks, section 8.2 of the text.)
7. For $f_{1}(x, y)=x^{4} / 4+x^{2}+x^{2} y+y^{2}$ and $f_{2}(x, y)=x^{3}+x y-x$, find the second-derivative matrices H_{1} and H_{2}, where:

$$
H=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right) .
$$

Find the minimum point of f_{1} (and check that H_{1} is positive-definite there). Find the saddle point of f_{2} (look only where the first derivatives are zero, and check that H_{2} has two eigenvalues with opposite signs).
8. (a) Give an explicit formula for $\mathbf{u}_{k}=A^{k} \mathbf{u}_{0}$, where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\mathbf{u}_{0}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$.
(b) Although you should find that A 's eigenvalues and eigenvectors are not real, give explicit values for $\mathbf{u}_{100}, \mathbf{u}_{101}, \mathbf{u}_{102}, \mathbf{u}_{103}$, showing that your formula gives real results.
(c) $\mathbf{u}_{k+n}=\mathbf{u}_{k}$ for what value(s) of n ?
9. For what (real) values of s does $d \mathbf{u} / d t=A \mathbf{u}$ have exponentially growing solutions, where

$$
A=\left(\begin{array}{cc}
-1 & s \\
2 & -3
\end{array}\right) ?
$$

