
18.06 Problem Set 8 Solution
Due Wednesday, 22 April 2009 at 4 pm in 2-106.

Total: 160 points.

Problem 1: If A is real-symmetric, it has real eigenvalues. What can you say about
the eigenvalues if A is real and anti-symmetric (A = −AT)? Give both a general
explanation for any n× n A (similar to what we did in class and in the book) and
check by finding the eigenvalues a 2× 2 anti-symmetric example matrix.

Solution (15 points = 10(proof) + 5(example) )
If λ is an eigenvalue of A with a nonzero eigenvector v, that is Av = λv. Then,

on one hand, we have vHAv = vHλv = λ‖v‖2, and on the other hand,

vHAv = (−vHAT)v = −(Av)Hv = −(λv)Hv = −λ̄‖v‖2.

Since v is nonzero, ‖v‖2 > 0. We conclude that λ = −λ̄. This implies that λ is
purely imaginary, that is the real part of λ is zero.

For example, we take A =

(
0 1
−1 0

)
. (Since A is anti-symmetric, its diagonal

entries must be zero.) We then solve det(A−λI) = λ2+1 = 0 to get λ1 = i, λ2 = −i.
They are purely imaginary numbers.

Problem 2: Find an orthogonal matrix Q that diagonalizes A =

(
−2 6
6 7

)
, i.e. so

that QTAQ = Λ where Λ is diagonal. What is Λ?

Solution (10 points)
Since A is real-symmetric, we should be able to get orthonormal eigenvectors,

and then Q is just the matrix whose columns are the eigenvectors (as in class and
the textbook), and Λ is the diagonal matrix of eigenvalues. So, we just solve for the
eigenvalues and eigenvectors of A. To get the eigenvalues, we solve det(A − λI) =
0 = λ2−5λ−50, obtaining λ1 = 10 and λ2 = −5. Since the eigenvalues are distinct,
the eigenvectors are automatically orthogonal, and we just need to normalize them
to have length 1:

λ1 = 10, A− λ1I =

(
−12 6

6 −3

)
, v1 =

(
1
2

)
, q1 =

(
1/
√

5

2/
√

5

)
λ2 = −5, A− λ2I =

(
3 6
6 12

)
, v2 =

(
−2
1

)
, q2 =

(
−2/
√

5

1/
√

5

)
.
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Hence, we have

Q =

(
1√
5
− 2√

5
2√
5

1√
5

)
, Λ =

(
10 0
0 −5

)

Problem 3: Even if the real matrix A is rectangular, the block matrix B =(
0 A
AT 0

)
is symmetric. An eigenvector ~x of B satisfies B~x = λ~x with:

~x =

(
~y
~z

)
,

(
0 A
AT 0

)(
~y
~z

)
= λ

(
~y
~z

)
,

and thus A~z = λ~y and AT~y = λ~z.

(a) Show that −λ is also an eigenvalue of B, with the eigenvector (~y,−~z)T.

(b) Show that ATA~z = λ2~z, so that λ2 is an eigenvalue of ATA.

(c) Show that λ2 is also an eigenvalue of AAT by finding a corresponding eigen-
vector.

(d) If A = I (2× 2), find all four eigenvalues and eigenvectors of B.

Solution (25 points = 5+5+5+10)
(a) We check this by direct computation.

B

(
~y
−~z

)
=

(
−A~z
AT~y

)
=

(
−λ~y
λ~z

)
= −λ

(
~y
−~z

)
.

Hence −λ is also an eigenvalue of B, with the eigenvector

(
~y
−~z

)
.

(b) Again, we check by direct computation.

ATA~z = AT(λ~y) = λAT~y = λ(λ~z) = λ2~z.

Hence, λ2 is an eigenvalue of ATA with eigenvector ~z.

(c) By “symmetry”, it is not hard to guess that ~y may be an eigenvector of AAT.
Indeed,

AAT~y = A(λ~z) = λA~z = λ(λ~y) = λ2~y.
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Hence, λ2 is an eigenvalue of AAT with eigenvector ~y.

(d) We can use the results from part (c) to solve this quickly. If A = I, then
ATA = I has an eigenvalue λ2. But the eigenvalues of I are 1, so λ2 = 1, so λ must
be 1 or −1. But from (a), if 1 is an eigenvalue then −1 must also be an eigenvalue
and vice versa, so the eigenvalues are 1 and −1. Furthermore, from (c), ~y is given
by the eigenvectors of ATA = I, which are just (1, 0)T and (0, 1)T . Furthermore,
since we were given that AT~y = λ~z, it follows that ~z = ±~y for λ = ±1. Hence, the
eigenvectors of λ = 1 are:

~x1 =


1
0
1
0

 , ~x2 =


0
1
0
1

 .

and the eigenvectors of λ = −1 are:

~x3 =


1
0
−1
0

 , ~x4 =


0
1
0
−1

 .

(There are also more laborious ways to get the same result. For example, once
we know that λ = ±1, we could compute the nullspace of B ± I.)

Problem 4: True or false (give a reason if true, or a counter-example if false).

(a) A matrix with real eigenvalues and real eigenvectors is symmetric.

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.

(c) The inverse of a symmetric matrix is symmetric.

(d) The eigenvector matrix S of a symmetrix matrix is symmetric.

(e) A complex symmetric matrix has real eigenvalues.

(f) If A is symmetric, then eiA is symmetric.

(g) If A is Hermitian, then eiA is Hermitian.

3



Solution (35 points = 5+5+5+5+5+5+5)

(a) False. For example, A =

(
2 2
0 3

)
has eigenvalues λ1 = 2 and λ2 = 3 with

eigenvectors v1 =

(
1

0

)
and v2 =

(
2

1

)
, respectively.

REMARK: For an upper triangular matrix A, the eigenvalues are exactly the
elements on the diagonal.

(b) False. For example, A =

(
1 1
0 1

)
.

REMARK: True is acceptable if the students assume that A is diagonalizable,
since we had handled only diagonalizable matrices up to that point in the course.
In this case, we may normalize the eigenvectors so that they form an orthonormal
basis. Now, we write A = S−1ΛS. Since the eigenvectors form an orthonormal
basis, S−1 = ST. Hence,

AT = (STΛS)T = STΛT(ST)T = STΛS = A

is symmetric.

(c) True. If A is a symmetric matrix, (A−1)TA = (A−1)TAT = (AA−1)T = IT =
I; this says (A−1)T is also the inverse of A, which is of course the same as A−1.
Hence A−1 is symmetric.

(d) False. For example, A =

(
1 2
2 1

)
. Then det(A − λI) = λ2 − 2λ − 3 =

0 ⇒ λ1 = −1, λ2 = 3. We solve the eigenvectors to be v1 =

(
1
−1

)
, v2 =

(
1
1

)
respectively. So, S =

(
1 1
−1 1

)
.

Another way to see this is false is that one can freely multiply any column of S
by a nonzero constant, but this will not preserve the symmetry.

(e) False. For example, A = (i), the 1× 1 matrix. The eigenvalue is i; it is not
a real number.

(f) True. Indeed, (eiA)T = e(iA)T = eiA.

(g) False. (eiA)H = e(iA)H = e−iAH
= e−iA. It is typically not the same as

eiA. Taking A = (1), the 1 × 1 matrix, would be a good enough example because
eiA = (ei), which is not a real number.
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Problem 5: For which s is A positive definite?

A =

 s −4 −4
−4 s −4
−4 −4 s

 .

Solution (15 points)
Method 1: We do elimination and check the pivots are all positive numbers.

A =

 s −4 −4
−4 s −4
−4 −4 s

;

s −4 −4
0 s− 16

s
−4− 16

s

0 −4− 16
s

s− 16
s


;

s −4 −4
0 s− 16

s
−4− 16

s

0 −4− 16
s

s− 16
s

;

s −4 −4
0 s− 16

s
−4− 16

s

0 0 s2−16
s
− (−4− 16

s
)2/(s− 16

s
)


We need all pivots to be bigger than 0.

The first pivot is s, which gives s > 0. The second pivot is s − 16
s

, which gives
s2−16

s
> 0. Since we already have s > 0, s2 > 16 and hence s > 4. Now, the third

pivot > 0 gives

(s− 16/s)2 > (−4− 16/s)2

⇒ (s2 − 16)2 > (4s+ 16)2

⇒ s4 − 32s2 + 256 > 16s2 + 128s+ 256

⇒ s4 − 48s2 − 128s > 0

⇒ s3 − 48s− 128 > 0

⇒ (s+ 4)2(s− 8) > 0

Hence s > 8.

Method 2: Since A is symmetric, it is diagonalizable. We just need to make all
the eigenvalues of A positive.

Consider

det(A− λI) = det

s− λ −4 −4
−4 s− λ −4
−4 −4 s− λ


= (s− λ)3 + 2 · (−4)3 − 3 · (−4)2(s− λ)

= (s− λ)3 − 48(s− λ)− 128 = (s− λ+ 4)2(s− λ− 8)
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Hence the eigenvalues are λ1 = λ2 = s+ 4 and λ3 = s− 8. If A is positive definite,
s+ 4 > 0, s− 8 > 0 ⇒ s > 8.

REMARK: The factorization does not come out from nowhere. One way to see

it is that we know beforehand, when s − λ = −4, A − λI =

−4 −4 −4
−4 −4 −4
−4 −4 −4

 is of

rank 1 and hence there should be a 2-dimensional nullspace. So, we are expecting
two eigenvalues s + 4. The s− λ− 8 term might be harder to guess. But knowing
two roots of the equation, one can get the third by high-school synthetic division.
(One could also look up the formula for cubic equations on Wikipedia, but that’s a
lot more messy!)

REMARK: There is another criterion by taking the determinants of the main
diagonal ”submatrices”, which we did not cover in the class. It says that a symmetric
matrix A is positive definite if and only if the determinant of upper left r× r block
is > 0 for any r (including r = n, which corresponds to the determinant of A).

Problem 6: If A has full column rank, and C is positive-definite, show that ATCA
is positive definite. (Recall that ATCA is an important matrix; for example, it arose
in lecture 13 on graphs and networks, section 8.2 of the text.)

Solution (10 points)
Since C is positive-definite, yTCy > 0 for any y 6= 0 in Rn. Now, we need to

show that zTATCAz > 0 for any z 6= 0 in Rn. We can rewrite it as zTATCAz =
(Az)TC(Az). Since A has full column rank, N(A) = {0} and in particular, Az 6= 0
in Rn. Therefore, we have (Az)TC(Az) > 0. This implies that ATCA is positive
definite.

Problem 7: For f1(x, y) = x4/4 + x2 + x2y + y2 and f2(x, y) = x3 + xy − x, find
the second-derivative matrices H1 and H2, where:

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
.

Find the minimum point of f1 (and check that H1 is positive-definite there). Find
the saddle point of f2 (look only where the first derivatives are zero, and check that
H2 has two eigenvalues with opposite signs).
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Solution (20 points = 10+10)
For f1(x, y), we first solve for the stationary point

∂f1

∂x
= x3 + 2x+ 2xy = 0, (1)

∂f1

∂y
= x2 + 2y = 0 (2)

From (2), we have y = −x2/2. Plug this into (1), we have 2x = 0 and hence the
only critical point is x = y = 0. At this point,

H1 =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
3x3 + 2 + 2y 2x

2x 2

)
=

(
2 0
0 2

)
.

It is positive definite and hence (0, 0) is a minimal point of f1(x, y).

REMARK: The problem for f1 = x4/4 + x2y + y2 as originally stated, you get
a curve of minima x2 + 2y = 0, and H1 is only positive semidefinite.

For f2(x, y), we first solve for the stationary point

∂f2

∂x
= 3x2 + y − 1 = 0,

∂f2

∂y
= x = 0

This implies that y = 1. At this point (0, 1),

H2 =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
6x 1
1 0

)
=

(
0 1
1 0

)
.

The eigenvalues of H2 at (0, 1) is the solution to det(H2 − λI) = λ2 − 1, which are
λ1 = 1 and λ2 = −1. They are with opposite signs and hence (0, 1) is a saddle point
of f2(x, y).

Problem 8:

(a) Give an explicit formula for ~uk = Ak~u0, where A =

(
0 1
−1 0

)
and ~u0 =(

1 2
)T

.
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(b) Although you should find that A’s eigenvalues and eigenvectors are not real,
give explicit values for ~u100, ~u101, ~u102, ~u103, showing that your formula gives
real results.

(c) ~uk+n = ~uk for what value(s) of n?

Solution (20 points = 10+5+5)
(a) Solving det(A− λI) = λ2 + 1 = 0 gives λ1 = i and λ2 = −i.

λ1 = i, A− λ1I =

(
−i 1
−1 −i

)
, v1 =

(
1
i

)
λ2 = −i, A− λ2I =

(
i 1
−1 i

)
, v2 =

(
1
−i

)
.

Then, we solve(
1 1
i −i

)(
c1
c2

)
=

(
1
2

)
⇒

(
c1
c2

)
=

(
1−2i

2
1+2i

2

)
Hence,

~uk = c1λ
k
1v1 + c2λ

k
2v2 =

1− 2i

2
· ik
(

1
i

)
+

1 + 2i

2
· (−i)k

(
1
−i

)
.

REMARK: As said in class, when A is a real matrix, having a complex eigenvalue
λ with eigenvector v, then λ̄ is also an eigenvalue and v̄ is one of the eigenvectors.
Moreover, when we try to solve for c1 and c2, we have c1 = c̄2. One can further
simplify the result we have to be

~uk = 2Re

(
1− 2i

2
· ik
(

1
i

))
=

(
Re
(
(1− 2i)ik

)
Re
(
(1− 2i)ik+1

))
(b) We have

~u100 =
1− 2i

2
· 1
(

1
i

)
+

1 + 2i

2
· 1
(

1
−i

)
=

(
1
2

)
.

~u101 =
1− 2i

2
· i
(

1
i

)
+

1 + 2i

2
· (−i)

(
1
−i

)
=

(
2
−1

)
.

~u102 =
1− 2i

2
· 1
(

1
i

)
+

1 + 2i

2
· (−1)

(
1
−i

)
=

(
−1
−2

)
.

~u103 =
1− 2i

2
· (−i)

(
1
i

)
+

1 + 2i

2
· i
(

1
−i

)
=

(
−2
1

)
.
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A faster way might be to use ~uk+1 = A~uk to compute ~u101, ~u102, ~u103 after we
computed ~u100.

(c) Since ik+4 = ik and (−i)k+4 = (−i)k, We have ~uk+4 = ~uk. From this, we can
of course say ~uk+4m = ~uk for any m.

Another way to see this is to check first several terms and find out that ~u5 = ~u1.
Then we know ~uk+4 = Ak−1~u5 = Ak−1~u1 = ~uk.

Problem 9: For what (real) values of s does d~u/dt = A~u have exponentially growing
solutions, where

A =

(
−1 s
2 −3

)
?

Solution (10 points)
We need only to find the eigenvalues of A. Solving det(A−λI) = λ2 +4λ+3−2s

would give the two eigenvalues of A, λ = −4±
√

4+8s
2

. The system has exponentially
growing solution if and only if one of the solution has a solution with positive real
part. If 4 + 8s < 0, i.e., the eigenvalues are complex, the real part is equal to −2,
which will not give exponentially growing solution. Thus, 4 + 8s ≥ 0, i.e, we have
two real eigenvalues. The bigger one should be greater than 0 in order to get the
exponentially growing solution.

−4±
√

4 + 8s

2
> 0 ⇒ 4 + 8s > 42 ⇒ s > 3/2.
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