18.06 Problem Set 7 Solution

Due Wednesday, 15 April 2009 at 4 pm in 2-106.
Total: 150 points.

Problem 1: Diagonalize $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and compute $S \Lambda^{k} S^{-1}$ to prove this formula for A^{k} :

$$
A^{k}=\frac{1}{2}\left(\begin{array}{ll}
3^{k}+1 & 3^{k}-1 \\
3^{k}-1 & 3^{k}+1
\end{array}\right)
$$

Solution (15 points)

Step 1: eigenvalues. $\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{trace}(A)+\operatorname{det}(A)=\lambda^{2}-4 \lambda+3=0$. The solutions are $\lambda_{1}=1, \lambda_{2}=3$.

Step 2: solve for eigenvectors.

$$
\begin{array}{lll}
\lambda_{1}=1, & A-\lambda I=\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right), & v_{1}=\binom{1}{-1} \\
\lambda_{2}=3, & A-\lambda I=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right), & v_{2}=\binom{1}{1} .
\end{array}
$$

Step 3: let $S=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ be the matrix whose columns are eigenvectors. Let $\Lambda=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ be the matrix for eigenvalues. Then we have

$$
\begin{aligned}
A^{k} & =S \Lambda^{k} S^{-1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 3
\end{array}\right)^{k}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 3^{k}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
3^{k}+1 & 3^{k}-1 \\
3^{k}-1 & 3^{k}+1
\end{array}\right) .
\end{aligned}
$$

Problem 2: Consider the sequence of numbers $f_{0}, f_{1}, f_{2}, \ldots$, defined by the recurrence relation $f_{n+2}=2 f_{n+1}+2 f_{n}$, starting with $f_{0}=f_{1}=1$ (giving 1, 1, 4, 10, 28, $76,208, \ldots)$.
(a) As we did for the Fibonacci numbers in class (and in the book), express this process as repeated multiplication of a vector $\vec{u}_{k}=\left(f_{k+1}, f_{k}\right)^{\mathrm{T}}$ by a matrix A : $\vec{u}_{k+1}=A \vec{u}_{k}$, and thus $\vec{u}_{k}=A^{k} \vec{u}_{0}$. What is A ?
(b) Find the eigenvalues of A, and thus explain that the ratio f_{k+1} / f_{k} tends towards \qquad as $k \rightarrow \infty$. Check this by computing f_{k+1} / f_{k} for the first few terms in the sequence.
(c) Give an explicit formula for f_{k} (it can involve powers of numbers, but not powers of matrices) by expanding f_{0} in the basis of the eigenvectors of A.
(d) If we apply the recurrence relation in reverse, we use the formula: $f_{n}=$ $f_{n+2} / 2-f_{n+1}$ (just solving the previous recurrence formula for f_{n}). Show that you get the same reverse formula if you just compute A^{-1}.
(e) What does $\left|f_{k} / f_{k+1}\right|$ tend towards as $k \rightarrow-\infty$ (i.e. after we apply the formula in reverse many times)? (Very little calculation required!)

Solution (30 points $=5+5+10+5+5$)

(a) The recurrence relation gives

$$
\begin{aligned}
f_{k+2} & =2 f_{k+1}+2 f_{k} \\
f_{k+1} & =f_{k+1} .
\end{aligned}
$$

Another way to write this is

$$
\vec{u}_{k+1}=\binom{f_{k+2}}{f_{k+1}}=\left(\begin{array}{ll}
2 & 2 \\
1 & 0
\end{array}\right)\binom{f_{k+1}}{f_{k}}=A \vec{u}_{k}, \quad \Rightarrow \quad A=\left(\begin{array}{ll}
2 & 2 \\
1 & 0
\end{array}\right) .
$$

(b) Solving $\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda-2=0$ gives $\lambda_{1}=1+\sqrt{3} \approx 2.732$ and $\lambda_{2}=1-\sqrt{3} \approx-0.732$. Since $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|, f_{k+1} / f_{k}$ tends towards $\lambda_{1} \approx 2.732$, as $k \rightarrow \infty$.

Check first few terms: $1,1,4,10,28,76,208,568, \ldots$

$$
\begin{aligned}
1 / 1 & =1 \\
4 / 1 & =4 \\
10 / 4 & =2.5 \\
28 / 10 & =2.8 \\
76 / 28 & \approx 2.7143 \\
208 / 76 & \approx 2.7368 \\
568 / 208 & \approx 2.7308 .
\end{aligned}
$$

REMARK: Another phenomenon one should notice is that, in the sequence, $f_{k+1} / f_{k}>\lambda_{1}$ when k is odd and $f_{k+1} / f_{k}<\lambda_{1}$ when k is even. This is because the second eigenvalue λ_{2} is negative. We will see in the explicit formula of f_{k} below.
(c) Find the eigenvectors.

$$
\begin{aligned}
& \lambda_{1}=1+\sqrt{3}, \quad A-\lambda I=\left(\begin{array}{cc}
1-\sqrt{3} & 2 \\
1 & -1-\sqrt{3}
\end{array}\right), \quad v_{1}=\binom{1+\sqrt{3}}{1} \\
& \lambda_{2}=1-\sqrt{3}, \quad A-\lambda I=\left(\begin{array}{cc}
1+\sqrt{3} & 2 \\
1 & -1+\sqrt{3}
\end{array}\right), \quad v_{2}=\binom{1-\sqrt{3}}{1} \text {. }
\end{aligned}
$$

Then, we expand \vec{u}_{0} as follows.

$$
\vec{u}_{0}=\binom{1}{1}=\frac{1}{2}\binom{1+\sqrt{3}}{1}+\frac{1}{2}\binom{1-\sqrt{3}}{1}=\frac{1}{2} v_{1}+\frac{1}{2} v_{2} .
$$

Hence, we have

$$
\vec{u}_{k}=A^{k} \vec{u}_{0}=\frac{1}{2} \lambda_{1}^{k} v_{1}+\frac{1}{2} \lambda_{2}^{k} v_{2} .
$$

In particular,

$$
f_{k}=\frac{1}{2}\left[(1+\sqrt{3})^{k}+(1-\sqrt{3})^{k}\right] .
$$

REMARK: From the explicit formula for f_{k}, we see that $f_{k}>\frac{1}{2}(1+\sqrt{3})^{k}$ if k is even and $f_{k}<\frac{1}{2}(1+\sqrt{3})^{k}$ if k is odd. This explains the earlier remark that $f_{k+1} / f_{k}<1+\sqrt{3}$ if k is even and $f_{k+1} / f_{k}>1+\sqrt{3}$ if k is odd.
(d) It is easy to compute $A^{-1}=-\frac{1}{2}\left(\begin{array}{cc}0 & -2 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ 1 / 2 & -1\end{array}\right)$.

Applying the recurrence relation in reverse gives

$$
\begin{aligned}
f_{n+1} & =f_{n+1} \\
f_{n} & =f_{n+2} / 2-f_{n+1}
\end{aligned}
$$

That is

$$
\vec{u}_{n}=\binom{f_{n+1}}{f_{n}}=\left(\begin{array}{cc}
0 & 1 \\
1 / 2 & -1
\end{array}\right)\binom{f_{n+2}}{f_{n+1}}=A^{-1} \vec{u}_{n+1}
$$

(e) Applying the process in reverse is dominated by the biggest-magnitude eigenvalue of A^{-1}. The eigenvalues of A^{-1} are just the reciprocals of the eigenvalues of
A, so its biggest-magnitude eigenvalue is the reciprocal of the smallest-magnitude eigenvalue of A, i.e. $1 / \lambda_{2}$. Hence,

$$
\left|\frac{f_{k}}{f_{k+1}}\right| \approx\left|\frac{\lambda_{2}^{k}}{\lambda_{2}^{k+1}}\right|=\left|\lambda_{2}^{-1}\right|=\frac{\sqrt{3}+1}{2} \approx 1.366
$$

Problem 3: Suppose that $A=S \Lambda S^{-1}$. Take determinants to prove that $\operatorname{det} A$ is the product of the eigenvalues of A. (This quick proof only works when A is
\qquad

Solution (5 points)

Since the determinant is multiplicative, we have

$$
\operatorname{det}(A)=\operatorname{det}\left(S \Lambda S^{-1}\right)=\operatorname{det}(S) \operatorname{det}(\Lambda) \operatorname{det}(S)^{-1}=\operatorname{det}(\Lambda)=\lambda_{1} \cdots \lambda_{n},
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.
The proof only works when A is diagonalizable.
REMARK: Note that the determinant is always the product of the eigenvalues, even for non-diagonalizable matrices. However, the proof for the non-diagonalizable case is a bit trickier.

Problem 4: In this problem, you will show that the trace of a matrix (the sum of the diagonal entries) is equal to the sum of the eigenvalues, by first showing that $A B$ and $B A$ have the same trace for any matrices A and B. Follow the following steps:
(a) The explicit formula for the entries $c_{i j}$ of $C=A B$ is $c_{i j}=\sum_{k} a_{i k} b_{k j}$ (where $a_{i k}$ and $b_{k j}$ are the entries of A and B, respectively). The trace of C is $\sum_{i} c_{i i}$. Write down the explicit formula for the entries $d_{i j}$ of the product $D=B A$. By plugging these matrix-multiply formulas into the formulas for the trace of $C=A B$ and $D=B A$, and comparing them, prove that $A B$ and $B A$ have the same trace.
(b) $A=S \Lambda S^{-1}$, assuming A is \qquad . Combining this factorization with the fact you proved in (a), show that the trace of A is the same as the trace of Λ, which is sum of the eigenvalues.

Solution (10 points)

(a) An explicit formula for entries $d_{i j}$ of D is $d_{i j}=\sum_{k} b_{i k} a_{k j}$, just switching the role of a and b in the expression of $c_{i j}$. So,

$$
\begin{aligned}
& \operatorname{trace}(C)=\sum_{i} c_{i i}=\sum_{i} \sum_{k} a_{i k} b_{k i} \\
& \operatorname{trace}(D)=\sum_{i} d_{i i}=\sum_{i} \sum_{k} b_{k i} a_{i k} .
\end{aligned}
$$

They are the same because we can change the indices i and k in the summation.
(b) For this to work, we have to assume that A is a diagonalizable $n \times n$ matrix. Using the identity above, we have (by viewing $S \Lambda$ as one matrix)

$$
\operatorname{trace}(A)=\operatorname{trace}\left(S \Lambda S^{-1}\right)=\operatorname{trace}\left(S^{-1} S \Lambda\right)=\operatorname{trace}(\Lambda)=\lambda_{1}+\cdots+\lambda_{n}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.
REMARK: This again works even if A does not have a full set of independent eigenvectors. One may use generalized eigenvectors to do the same trick. We again will omit the details.

Problem 5: Suppose $A^{2}=A$. (This does not mean $A=I$, since A might not be invertible; it might be a projection onto a subspace, for example.)
(a) Explain why any eigenvector with $\lambda=0$ is in the \qquad space of A, and vice versa (any nonzero vector in that space is an eigenvector with $\lambda=0$).
(b) Explain why any eigenvector with $\lambda=1$ is in the \qquad space of A, and vice versa (any nonzero vector in that space is an eigenvector with $\lambda=1$). (Hint: first explain why each column of A is an eigenvector.)
(c) Conclude from the dimensions of these subspaces that any such A must have a full set of independent eigenvectors and hence be diagonalizable.

Solution (15 points $=5+5+5$)
(a) Any eigenvector with $\lambda=0$ is in the nullspace of A. This is because $\vec{v} \in N(A)$ if and only if $A \vec{v}=0=0 \cdot \vec{v}$.
(b) Any eigenvector with $\lambda=1$ is in the column space of A. For each column \vec{x} of $A, A^{2}=A$ implies that $A \vec{x}=\vec{x}$. Hence, each column vector is an eigenvector with $\lambda=1$, so is any vector in the column space.

Conversely, if v is an eigenvector with $\lambda=1$, that means that $A v=v$, which implies that v is in $C(A)$.

REMARK: Note that for a more general matrix with nonzero eigenvalues $\neq 1$, it is still true that any eigenvector for a nonzero eigenvalue is in the column space of A, since $A(v / \lambda)=v$. However, the span of these eigenvectors may only be a subspace of the column space (if A is not diagonalizable).
(c) Say that A is an $n \times n$ matrix. Note that the dimension of the column space is the rank of A, whereas the dimension of the nullspace of A is $n-\operatorname{rank}(A)$. The dimensions add up to n. Hence, the eigenspace for $\lambda=0$ and the eigenspace for λ_{0} span the whole space \mathbb{R}^{n}. Therefore, A much have a full set of independent eigenvectors and hence diagonalizable.

Problem 6: A genderless alien society survives by cloning/budding. Every year, 5% of young aliens become old, 3% of old aliens become dead, and 1% of the old aliens and 2% of the dead aliens are cloned into new young aliens. The population can be described by a Markov process:

$$
\left(\begin{array}{c}
\text { young } \\
\text { old } \\
\text { dead }
\end{array}\right)_{\text {year } k+1}=A\left(\begin{array}{c}
\text { young } \\
\text { old } \\
\text { dead }
\end{array}\right)_{\text {year } k}
$$

(a) Give the Markov matrix A, and compute (without Matlab) the steady-state young/old/dead population fractions.
(b) In Matlab, enter your matrix A and a random starting vector $\mathrm{x}=\operatorname{rand}(3,1)$; $\mathrm{x}=\mathrm{x} / \operatorname{sum}(\mathrm{x})($ normalized to sum to 1$)$. Now, compute the population for the first 100 years, and plot it versus time, by the following Matlab code:

```
p = [];
for k = 0:99
    p = [ p, A^k * x ];
end
plot([0:99], p')
legend('young', 'old', 'dead')
xlabel('year'); ylabel('population fraction');
```

Check that the final population p (: ,end) is close to your predicted steady state.
(c) In Matlab, compute A to a large power A^{1000} (in Matlab: A^1000). Explain why you get what you do, in light of your answer to (a).

Solution (15 points $=5+5+5$)

(a) The Markov matrix A is given by

$$
\left(\begin{array}{ccc}
0.95 & 0.01 & 0.02 \\
0.05 & 0.96 & 0 \\
0 & 0.03 & 0.98
\end{array}\right)
$$

Computing the steady-state is equivalent to find the eigenvector for $\lambda=1$. We do a Gaussian elimination.

$$
A-I=\left(\begin{array}{ccc}
-0.05 & 0.01 & 0.02 \\
0.05 & -0.04 & 0 \\
0 & 0.03 & -0.02
\end{array}\right) \leadsto\left(\begin{array}{ccc}
-0.05 & 0.01 & 0.02 \\
0 & -0.03 & 0.02 \\
0 & 0.03 & -0.02
\end{array}\right) \leadsto\left(\begin{array}{ccc}
5 & -1 & -2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

A solution is given by $v=\left(\frac{8}{5}, 2,3\right)^{\mathrm{T}}$. If we normalize the vector so that the sum of the coordinates is 1 , we get $v^{\prime}=\frac{1}{33}(8,10,15)^{\mathrm{T}} \approx(0.2424,0.3030,0.4545)^{\mathrm{T}}$.

In other words, the steady-state young/old/dead population ratio is $8: 10: 15$.
(b) The code and the result is as follows.

```
>> A = [0.95, 0.01, 0.02; 0.05, 0.96, 0; 0, 0.03, 0.98]
A =
\begin{tabular}{rrr}
0.9500 & 0.0100 & 0.0200 \\
0.0500 & 0.9600 & 0 \\
0 & 0.0300 & 0.9800
\end{tabular}
>> x = rand(3, 1); x = x / sum(x)
x =
    0.4410
    0.4903
    0.0687
```

```
>> p = [];
>> for k = 0:99
p = [p, A^k * x ];
end
>> plot([0:99], p')
>> legend('young', 'old', 'dead')
>> xlabel('year'); ylabel('polulation fraction');
>> p(:, end)
ans =
    0.2412
    0.3058
    0.4530
```



```
(c)
```

```
>> A^1000
```

>> A^1000
ans =

0.2424	0.2424	0.2424
0.3030	0.3030	0.3030
0.4545	0.4545	0.4545

```

For a large power like \(A^{1000}\), we should expect any initial vector to converge to the steady state. That means that the column space of \(A^{1000}\) should just be the steadystate eigenvector, which means that each column of A should be approximately this eigenvector (normalized so that each column sums to 1).

Problem 7: If \(A\) is both a symmetric matrix and a Markov matrix, why is its steady-state eigenvector \((1,1, \ldots, 1)^{\mathrm{T}}\) ?

\section*{Solution (5 points)}

A very important property of a Markov matrix is that \(\left[\begin{array}{lllll}1 & 1 & \cdots & 1 & 1\end{array}\right] A=\) \(\left[\begin{array}{lllll}1 & 1 & \cdots & 1 & 1\end{array}\right]\). Taking transpose, we have
\[
A^{\mathrm{T}}\left[\begin{array}{lllll}
1 & 1 & \cdots & 1 & 1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{llllll}
1 & 1 & 1 & \cdots & 1
\end{array}\right]^{\mathrm{T}} .
\]

But \(A=A^{\mathrm{T}}\) is symmetric. Hence, \(\left[\begin{array}{ll}1 & 1\end{array}, 1\right]^{\mathrm{T}}\) is an eigenvector with \(\lambda=1\). It is a steady-state eigenvector.

Problem 8: Find the \(\lambda\) 's and \(\vec{x}\) 's so that \(\vec{u}=e^{\lambda t} \vec{x}\) is a solution of
\[
\frac{d \vec{u}}{d t}=\left(\begin{array}{cc}
2 & 3  \tag{1}\\
0 & -1
\end{array}\right) \vec{u} .
\]

Make a linear combination of these solutions to solve this equation with the initial condition \(\vec{u}(0)=(5,-2)^{\mathrm{T}}\).

Solution (15 points)
Step 1: find the eigenvalues and the eigenvectors of the matrix \(A=\left(\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right)\). Solving \(\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-2=0\) gives \(\lambda_{1}=2\) and \(\lambda_{2}=-1\).
\[
\begin{array}{cc}
\lambda_{1}=2, & A-\lambda I=\left(\begin{array}{cc}
0 & 3 \\
0 & -3
\end{array}\right), \quad \vec{v}_{1}=\binom{1}{0} \\
\lambda_{2}=-1, \quad A-\lambda I=\left(\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right), \quad \vec{v}_{2}=\binom{1}{-1} .
\end{array}
\]

Step 2: we have
\[
\vec{u}_{1}=e^{\lambda_{1} t} \vec{v}_{1}=\binom{e^{2 t}}{0} \quad \text { and } \quad \vec{u}_{2}=e^{\lambda_{2} t} \vec{v}_{2}=\binom{e^{-t}}{-e^{-t}}
\]
to be the solution of (1).

Step 3: solve the initial value problem for \(\vec{u}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}\); this requires to solve
\[
\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{5}{-2} .
\]

We then have \(c_{1}=3, c_{2}=2\). Hence,
\[
\vec{u}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}=\binom{3 e^{2 t}+2 e^{-t}}{-2 e^{-t}} .
\]

Problem 9: Explain how to write an equation \(\alpha \frac{d^{2} y}{d t^{2}}+\beta \frac{d y}{d t}+\gamma y=0\) as a vector equation \(M \frac{d \vec{u}}{d t}=A \vec{u}\).

\section*{Solution (5 points)}

Write \(\vec{u}=\binom{\frac{d y}{d t}}{y}\). Then \(\frac{d \vec{u}}{d t}=\binom{\frac{d^{2} y}{d d^{2}}}{\frac{d y}{d t}}\). The equation gives that
\[
\begin{aligned}
\alpha \frac{d^{2} y}{d t^{2}} & =-\beta \frac{d y}{d t}-\gamma y \\
\frac{d y}{d t} & =\frac{d y}{d t}
\end{aligned}
\]

This translates to say
\[
\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) \frac{d \vec{u}}{d t}=\left(\begin{array}{cc}
-\beta & -\gamma \\
1 & 0
\end{array}\right)
\]

Remark to the graders, it is okay for the students to assume that \(\alpha \neq 0\) and write the final result as follows.
\[
\frac{d \vec{u}}{d t}=\left(\begin{array}{cc}
-\frac{\beta}{\alpha} & -\frac{\gamma}{\alpha} \\
1 & 0
\end{array}\right)
\]

Problem 10: A matrix \(A\) is antisymmetric, or "skew" symmetric, which means that \(A^{\mathrm{T}}=-A\). Prove that the matrix \(Q=e^{A t}\) is orthogonal: transpose the series for \(Q=e^{A t}\) to show that you get the series for \(e^{-A t}\), and thus \(Q^{\mathrm{T}} Q=I\). Therefore, if \(\vec{u}(t)=e^{A t} \vec{u}(0)\) is any solution to the system \(\frac{d \vec{u}}{d t}=A \vec{u}\), then we know that \(\|\vec{u}(t)\| /\|\vec{u}(0)\|=\)

Solution ( 15 points \(=10+5\) )
Write out the series that defines \(Q=e^{A t}\) and transpose.
\[
Q^{\mathrm{T}}=\left(e^{A t}\right)^{\mathrm{T}}=\left(\sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}\right)^{\mathrm{T}}=\sum_{n=0}^{\infty} \frac{\left(A^{\mathrm{T}} t\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-A t)^{n}}{n!}=e^{-A t}
\]

Hence \(Q^{\mathrm{T}} Q=e^{-A t} e^{A t}=I\). This implies that \(Q\) is orthogonal.
Since orthogonal matrices preserve norms, we must have \(\left\|e^{A t} \vec{u}(0)\right\|=\|u(0)\|\). Hence, \(\|\vec{u}(t)\| /\|\vec{u}(0)\|=1\).

REMARK: it is not in general true that \(e^{B t} e^{A t}=e^{(B+A) t}\) for any square matrices \(A\) and \(B\). In fact, this is only true if \(A B=B A\). But this is certainly true for \(B=-A\) as it is here. More simply, \(e^{A t}\) is the matrix that propagates the solution forward in time by \(t\), while \(e^{-A t}\) propagates the solution backwards in time by \(-t\), so the two matrices must be inverses.

Problem 11: If \(A^{2}=A\), show from the infinite series that \(e^{A t}=I+\left(e^{t}-1\right) A\). For \(A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\), this gives \(e^{A t}=\) \(\qquad\)
Solution (10 points)
Since \(A^{2}=A\), we have \(A^{k}=A\) for any \(k>0\).
\[
e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}=I+\sum_{n=1}^{\infty} \frac{A t^{n}}{n!}=I+A\left(\sum_{n=1}^{\infty} \frac{t^{n}}{n!}\right)=I+A\left(e^{t}-1\right)
\]

When \(A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\), we have
\[
e^{A t}=I+\left(e^{t}-1\right) A=\left(\begin{array}{cc}
e^{t} & e^{t}-1 \\
0 & 1
\end{array}\right)
\]

Problem 12: Assume \(A\) is diagonalizable with real eigenvalues. What condition on the eigenvalues of \(A\) ensures that the solutions of \(\frac{d \vec{u}}{d t}=A \vec{u}\) will not blow up for \(t \rightarrow \infty\) ? In comparison, what condition on the eigenvalues of \(A\) ensures that solutions of the linear recurrence relation \(\vec{u}_{k+1}=A \vec{u}_{k}\) will not blow up for \(k \rightarrow \infty\) ?

Solution (10 points \(=5+5\) )
For ODE problem, if the solutions do not blow up as \(t \rightarrow \infty\), the eigenvalues \(\lambda\) of \(A\) has to have real part less than or equal to 0 , i.e. \(\operatorname{Re}(\lambda) \leq 0\). This is because the solution looks like \(e^{\lambda t} \vec{v}\), where \(\vec{v}\) is an eigenvector with eigenvalue \(\lambda\).

For the linear recurrence problem, if \(\vec{u}_{k}\) does not blow up, the eigenvalues \(\lambda\) of \(A\) has to have absolute value less than or equal to 1 , that is \(\left|\lambda_{1}\right| \leq 1\). This is because the main term in \(\vec{u}_{k}\) looks like \(\lambda^{k} \vec{v}\), where \(\vec{v}\) is an eigenvector with eigenvalue \(\lambda\).```

