
18.06 Problem Set 5 Solution
Due Wednesday, 18 March 2009 at 4 pm in 2-106.

Total: 130 points.

Problem 1: Write down three equations for the line b = C + Dt to go through
b = 7 at t = −1, b = 7 at t = 1, and b = 21 at t = 2. Find the least-squares solution
~̂x = (C,D)T. Sketch these three points and the line you found (or use a plotting
program).

Solution (10 points)
The equations for the line b = C +Dt is1 −1

1 1
1 2

(C
D

)
=

 7
7
21

 .

Thus, the least-squares solution is given by solving(
1 1 1
−1 1 2

)1 −1
1 1
1 2

(C
D

)
=

(
1 1 1
−1 1 2

) 7
7
21

 ,

(
3 2
2 6

)(
C
D

)
=

(
35
42

)
Hence, C = 9, D = 4 and then ~̂x = (9 4)T.

We plot the three points and the lines using MATLAB as follows, where the
blue line is the line in the first problem and the red line is the one that passes origin
in Problem 2.
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>> plot(-1, 7, ’x’); plot(1, 7, ’x’); plot(2, 21, ’x’);

>> hold on

>> fplot(@(x) 4*x + 9, [-2, 3], ’b’);

>> fplot(@(x) 7*x, [-2, 3], ’r’);

>> xlabel(’t’); ylabel(’x’);

>> grid

Problem 2: For the same three points as in the previous problem, find the best-fit
(least-squares) line through the origin. (What is the equation of a line through the
origin? How many unknown parameters do you have?) Sketch this line on your plot
from the previous problem.

Solution (10 points)
The equation for the line becomes b = Dt as the line goes through the origin.

So we need to find the least-squares solution to the following linear system.−1
1
2

 (D) =

 7
7
21


Similar to Problem 1, we need to solve

(
−1 1 2

)−1
1
2

 (D) =
(
−1 1 2

) 7
7
21


Hence, 6D = 42, and we have D = 7.

Problem 3: If we solve ATA~̂x = AT~b, which of the four subspaces of A contains
the error vector ~e = ~b − A~̂x? Which contains the projection ~p = A~̂x? Can ~̂x be
chosen to lie completely inside any of the subspaces, and if so which one?

Solution (15 points = 5+5+5)
Since the error vector is orthogonal to the column space C(A), it lies in the left

nullspace N(AT).
The projection ~p is on the column space C(A) (because it is the projection onto

the column space).
Since the row space C(AT) and the nullspace N(A) spans the whole space, and

we can always modify the vector ~̂x by a vector in N(A) (which does not affect the

projection A~̂x). Hence, we can choose ~̂x to be in the row space C(AT).
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REMARK: We actually see this phenomenon in Problem 11(d) of Pset 4.

Problem 4: In this problem, you will use 18.02-level calculus to understand why
the solution to ATA~x = AT~b minimizes ‖A~x−~b‖ over all ~x, for any arbitrary m×n
matrix A. Consider the function:

f(~x) = ‖A~x− b‖2 = (A~x−~b)T(A~x−~b) (1)

= ~xTATA~x−~bTA~x− ~xTAT~b+~bT~b (2)

=
∑
i,j

Bijxixj − 2
∑
i,j

Aijbixj +~bT~b, (3)

where B = ATA. Compute the partial derivatives ∂f/∂xk (for any k = 1, . . . , n),
and show that ∂f/∂xk = 0 (true at the minimum of f) leads to the system of n

equations ATA~x = AT~b.1

Solution (10 points)
Fix k = 1, . . . , n. From equation (3), we have

∂f

∂xk
(~x) =

∑
j

Bkjxj +
∑
i

Bikxi − 2
∑
i

Aikbi.

Note that we can simply replace symbols
∑

j Bkjxj =
∑

iBkixi. Moreover, since B

is symmetric, (B = ATA = (ATA)T = BT), we have
∑

iBkixi =
∑

iBikxi. Hence,

∂f

∂xk
(~x) = 2

∑
i

Bikxi − 2
∑
i

Aikbi.

For f(~x) to achieve its minimum, we need to require that ∂f
∂xk

(~x) = 0. For this,
we need to ask ∑

i

Bikxi =
∑
i

Aikbi for all k.

In matrix notation, this is just the equation for the k-th row of ATAx = AT b,
recalling that B = ATA. Hence, we have ATA~x = AT~b.

1Strictly speaking, by setting ∂f/∂xk = 0 we are only sure we have an extremum, not a
minimum. A little more care is required to establish that it is a minimum—you are not required
to show this! Informally, ‖A~x − ~b‖2 is clearly increasing if we make ~x arbitrarily large in any
direction, so if there is one extremum it can only be a minimum, not a maximum or saddle point
(the function is concave-up). A more formal treatment involves the concept of positive definiteness,
which we will study later in 18.06.
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Problem 5: Matlab problem: in this problem, you will use Matlab to help you find
and plot least-square fits of the function f(t) = 1/(1 + 25t2) for the m = 9 points
t = −0.9,−0.675, . . . , 0.9 to a line, quadratic, and higher-order polynomials. First,
define the vector ~t of nine t values and the vector ~b of f(t) values, and plot the
points as red circles:

m = 9

t = linspace(-0.9, 0.9, m)’

b = 1 ./ (1 + 25 * t.^2)

plot(t, b, ’ro’)

hold on

The command “hold on” means that subsequent plots will go on top of this one
(normally each time you run plot the new plot replaces the old one). To fit to a
line C +Dt, as in class, we form the m× 2 matrix A whose first column is all ones
and whose second column is ~t:

A = [ones(m,1), t]

Now, we have to solve the normal equations ATA~x = AT~b to find the least-square
fit ~x = (C,D)T. In Matlab, however, you can do this with the backslash command,

exactly as if you were solving A~x = ~b: Matlab notices that the problem is not
exactly solvable and does the least-square solution automatically. Here, we find the
least-square line fit and plot it as a blue line for many t values [noting that x(1)

= x1 = C and x(2) = x2 = D]:

x = A \ b

tvals = linspace(-1,1,1000);

plot(tvals, x(1) + x(2) * tvals, ’b-’)

Next, try a quadratic fit, to C +Dt+ Et2, plotted as a dashed green line:

A = [ones(m,1), t, t.^2]

x = A \ b

plot(tvals, x(1) + x(2) * tvals + x(3) * tvals.^2, ’g--’)

Finally (figure out the code yourself), fit to a quartic polynomial C+Dt+Et2+Ft3+
Gt4, and then to a degree-8 polynomial C+Dt+Et2+Ft3+Gt4+Ht5+It6+Jt7+Kt8.
Plot your fits, as above. (Turn in a printout of your plots and your code, and the
fit coefficients ~x for all four fits.)
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Is your fit staying close to the original function f(t)? It can be unreliable to try
to fit to a high-degree polynomial, due to something called a Runge phenomenon.2

Solution (10 points)
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>> m = 9;

>> t = linspace(-0.9, 0.9, m)’

t =

-0.9000

-0.6750

-0.4500

-0.2250

0

2Given enough fit parameters, you can fit anything, but such “over-fitting” usually doesn’t give
useful results. A famous quote attributed by Fermi to von Neumann goes: “With four parameters,
I can fit an elephant, and with five I can make him wiggle his trunk.”
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0.2250

0.4500

0.6750

0.9000

>> b = 1 ./ (1 + 25 * t.^2)

b =

0.0471

0.0807

0.1649

0.4414

1.0000

0.4414

0.1649

0.0807

0.0471

>> plot(t, b, ’ro’)

>> hold on

>> A = [ones(m, 1), t]

A =

1.0000 -0.9000

1.0000 -0.6750

1.0000 -0.4500

1.0000 -0.2250

1.0000 0

1.0000 0.2250

1.0000 0.4500

1.0000 0.6750

1.0000 0.9000

>> x = A \ b

x =
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0.2742

0.0000

>> tvals = linspace(-1, 1, 1000);

>> plot(tvals, x(1) + x(2) * tvals, ’b-’)

>> hold on

>> A = [ones(m,1), t, t.^2]

A =

1.0000 -0.9000 0.8100

1.0000 -0.6750 0.4556

1.0000 -0.4500 0.2025

1.0000 -0.2250 0.0506

1.0000 0 0

1.0000 0.2250 0.0506

1.0000 0.4500 0.2025

1.0000 0.6750 0.4556

1.0000 0.9000 0.8100

>> x = A \ b

x =

0.5187

0.0000

-0.7243

>> plot(tvals, x(1) + x(2) * tvals + x(3) * tvals.^2, ’g--’)

>> A = [ones(m,1), t, t.^2, t.^3, t.^4]

A =

1.0000 -0.9000 0.8100 -0.7290 0.6561

1.0000 -0.6750 0.4556 -0.3075 0.2076

1.0000 -0.4500 0.2025 -0.0911 0.0410

1.0000 -0.2250 0.0506 -0.0114 0.0026

1.0000 0 0 0 0

1.0000 0.2250 0.0506 0.0114 0.0026
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1.0000 0.4500 0.2025 0.0911 0.0410

1.0000 0.6750 0.4556 0.3075 0.2076

1.0000 0.9000 0.8100 0.7290 0.6561

>> x = A \ b

x =

0.7007

-0.0000

-2.6385

0.0000

2.3015

>> plot(tvals, x(1) + x(2) * tvals + x(3) * tvals.^2 + x(4) * tvals.^3

+ x(5)*tvals.^4, ’m-.’)

>> A = [ones(m,1), t, t.^2, t.^3, t.^4, t.^5, t.^6, t.^7, t.^8]

A =

1.0000 -0.9000 0.8100 -0.7290 0.6561 -0.5905 0.5314

-0.4783 0.4305

1.0000 -0.6750 0.4556 -0.3075 0.2076 -0.1401 0.0946

-0.0638 0.0431

1.0000 -0.4500 0.2025 -0.0911 0.0410 -0.0185 0.0083

-0.0037 0.0017

1.0000 -0.2250 0.0506 -0.0114 0.0026 -0.0006 0.0001

-0.0000 0.0000

1.0000 0 0 0 0 0 0

0 0

1.0000 0.2250 0.0506 0.0114 0.0026 0.0006 0.0001

0.0000 0.0000

1.0000 0.4500 0.2025 0.0911 0.0410 0.0185 0.0083

0.0037 0.0017

1.0000 0.6750 0.4556 0.3075 0.2076 0.1401 0.0946

0.0638 0.0431

1.0000 0.9000 0.8100 0.7290 0.6561 0.5905 0.5314

0.4783 0.4305

>> x = A \ b
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x =

1.0000

-0.0000

-14.7838

0

82.3065

-0.0000

-168.3622

0.0000

108.0110

>> plot(tvals, x(1) + x(2) * tvals + x(3) * tvals.^2 + x(4) * tvals.^3

+ x(5) * tvals.^4 + x(6) * tvals.^5 + x(7) * tvals.^6 + x(8) * tvals.^7

+ x(9) * tvals.^8, ’r-’)

>> xlabel(’t’); ylabel(’f(t)’);

As we fit to a higher and higher degree polynomials, the fit becomes closer and
closer to the prescribed points. Since there are 9 points, a degree-8 polynomial
(which has 9 coefficients) goes through all of the points exactly. However, in be-
tween the points the fit polynomial oscillates more and more wildly as the degree
is increased. This is a well-known problem when fitting high-degree polynomials to
curves, especially at equally-spaced t values. The solution to this problem is out-
side the scope of 18.06, but lies in the field of approximation theory. [It involves
choosing the t coordinates more carefully: not to be equally spaced, but to follow
a pattern like t = cos(nπ/N) for n = 0, . . . , N—this is something called Chebyshev
approximation.] The basic point to remember is that using too many fit parameters
can lead to very poor results—just because you can fit to a function with zillions of
parameters doesn’t mean that you should.

Problem 6: If A has 4 orthogonal columns with lengths 1, 2, 3, and 4, respectively,
what is ATA?

Solution (5 points)
The matrix A looks like (~q1 ~q2 ~q3 ~q4). Then

ATA =


~q1 · ~q1 ~q1 · ~q2 ~q1 · ~q3 ~q1 · ~q4
~q2 · ~q1 ~q2 · ~q2 ~q2 · ~q3 ~q2 · ~q4
~q3 · ~q1 ~q3 · ~q2 ~q3 · ~q3 ~q3 · ~q4
~q4 · ~q1 ~q4 · ~q2 ~q4 · ~q3 ~q4 · ~q4

 =


1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 16

 .
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Problem 7: Give an example of:

(a) A matrix Q that has orthonormal columns but QQT 6= I.

(b) Two orthogonal vectors that are not linearly independent.

(c) An orthonormal basis for R3, one vector of which is ~q1 = (1, 2, 3)T/
√

14.

Solution (15 points = 5+5+5)
(a) Assume that Q has orthonormal columns, then QQT = I if and only if Q is

invertible; this is also equivalent to Q is a square matrix. A counterexample of (a)
would be for example,

Q =

1 0
0 1
0 0

 , QQT =

1 0 0
0 1 0
0 0 0

 .

REMARK: QQT is the projection matrix onto C(Q), which here is the space of

vectors
(
a b 0

)T
.

(b) If one of the vector is 0, then they are both orthogonal and linearly depen-
dent.

(c) We use Gram-Schmidt, to ~q1,~a2 = (−2, 1, 0)T,~a3 = (0,−3, 2)T. (Note that
~q1,~a2,~a3 are linearly independent.)

We chose ~qT
1 ~a2 = 0, we may take

~q2 = ~a2/‖~a2‖ = (− 2√
5
,

1√
5
, 0)T.

Also, we note that we chose ~qT
1 ~a3 = 0, the Gram-Schmidt gives

~q3 =
~a3 − (~a3 · ~q2)~q2
‖~a3 − (~a3 · ~q2)~q2‖

=

(
− 6

5
,−12

5
, 2
)T∥∥(− 6

5
,−12

5
, 2
)T∥∥ = (−3,−6, 5)T

/√
70.

REMARK: We may choose ~a2,~a3 to be any pair of vectors that, along with q1,
are linearly independent. (For example, ~a2 = (1, 0, 0)T,~a3 = (0, 1, 0)T.) Here, we
choose ~a2,~a3 as above just to make the computation less complicated.
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Problem 8: If Q has n orthonormal columns ~q1, ~q2, . . . , ~qn, what combination
x1~q1 + x2~q2 + · · · + xn~qn is closest to a given vector ~b? That is, give an explicit
expression for ~x = (x1, x2, . . . , xn)T.

Solution (10 points)
Since Q has orthonormal columns, QTQ = I.
To find ~x that gives the combination x1~q1 + · · ·+ xn~qn closest to the given ~b, we

look for the least-squares solution.

~x = (QTQ)−1QT~b = QT~b =

~q1 ·~b...

~qn ·~b



Problem 9: Find the QR factorization and an orthonormal basis of the column
space for the matrix:

A =


1 −2
1 0
1 1
1 3

 .

Solution (10 points)
We use Gram-Schmidt algorithm.

~q1 =
(1, 1, 1, 1)T

‖(1, 1, 1, 1)T‖
=
(1

2
,
1

2
,
1

2
,
1

2

)T
;

~q2 =
(−2, 0, 1, 3)T −

(
(1

2
, 1

2
, 1

2
, 1

2
)(−2, 0, 1, 3)T

)
(1

2
, 1

2
, 1

2
, 1

2
)T

‖(−2, 0, 1, 3)T −
(
(1

2
, 1

2
, 1

2
, 1

2
)(−2, 0, 1, 3)T

)
(1

2
, 1

2
, 1

2
, 1

2
)T‖

= (−5

2
,−1

2
,
1

2
,
5

2
)
/√

13.

Thus, we write the matrix A as
1 −2
1 0
1 1
1 3

 =


1
2
− 5

2
√

13
1
2
− 1

2
√

13
1
2

1
2
√

13
1
2

5
2
√

13


(

2 1

0
√

13

)
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Problem 10: Suppose the QR factorization of A = QR is given by.

Q =


1/
√

3 0 1/
√

15

0 1/
√

3 3/
√

15

1/
√

3 1/
√

3 −2/
√

15

1/
√

3 −1/
√

3 1/
√

15

 R =

√3 2
√

3 −
√

3

0 2
√

3
√

3

0 0 3
√

15

 .

Without explicitly computing A, find the least-square solution ~̂x to A~x = ~b for
~b = (5, 15, 5, 5)T.

Solution (10 points)
We first make a derivation copied from the class. We need to solve

ATA~̂x = AT~b

(QR)T(QR)~̂x = (QR)T~b (A = QR)

RTQTQR~̂x = RTQT~b

RTR~̂x = RTQT~b Q is orthogonal, i.e. QTQ = I

R~̂x = QT~b R is invertible.

So, it suffices to solve R~̂x = QT~b, i.e.

√3 2
√

3 −
√

3

0 2
√

3
√

3

0 0 3
√

15

x1

x2

x3

 =

 1/
√

3 0 1/
√

3 1/
√

3

0 1/
√

3 1/
√

3 −1/
√

3

1/
√

15 3/
√

15 −2/
√

15 1/
√

15




5
15
5
5


We get ~̂x = (2, 2, 1)T.

Problem 11: Recall that we can define the “length” ‖f(x)‖ of a function f(x) by
‖f(x)‖2 = f(x) · f(x), where the “dot product” of two functions is f(x) · g(x) =∫ 2π

0
f(x)g(x) dx. With this dot product, three orthonormal functions are q1(x) =

sin(x)/
√
π, q2(x) = sin(2x)/

√
π, and q3(x) = sin(3x)/

√
π. If b(x) = x, find the

closest function p(x) to b(x) (minimizing ‖b(x)− p(x)‖) in the subspace spanned by
q1, q2, and q3. Hint: think about what you would do if these were column vectors
rather than functions.

Solution (10 points)
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We need to find the “orthogonal projection” of b(x) onto the space spanned by
q1, q2, and q3, which would minimize ‖b(x)− p(x)‖. The projection is exactly given
by

p(x) =
(
b(x) · q1(x)

)
q1(x) +

(
b(x) · q2(x)

)
q2(x) +

(
b(x) · q3(x)

)
q3(x).

By calculation, we have

b(x) · q1(x) =

∫ 2π

0

x sinx√
π

dx = −x cosx√
π

∣∣∣2π
0

+

∫ 2π

0

cosx√
π
dx = −2

√
π,

b(x) · q2(x) =

∫ 2π

0

x sin 2x√
π

dx = −x cos 2x

2
√
π

∣∣∣2π
0

+

∫ 2π

0

cos 2x

2
√
π
dx = −

√
π,

b(x) · q3(x) =

∫ 2π

0

x sin 3x√
π

dx = −x cos 3x

3
√
π

∣∣∣2π
0

+

∫ 2π

0

cos 3x

3
√
π
dx = −2

3

√
π,

Hence, the projection is

p(x) = −2 sinx− sin 2x− 2

3
sin 3x.

Problem 12: Define the “dot product” of two functions as

f(x) · g(x) =

∫ ∞
0

f(x)g(x)e−x dx.

With respect to this dot product, find an orthonormal basis for the subspace of
functions spanned by 1, x, and x2 (i.e. the polynomials of degree 2 or less), using
the Gram–Schmidt procedure.

Solution (15 points)
First of all, we include a proof of an 18.01 problem that for any n ∈ N,∫∞

0
xne−xdx = n!. For example, when n = 1, we have∫ ∞

0

xe−xdx = −xe−x
∣∣∞
0

+

∫ ∞
0

e−xdx = 1.

The same integration by part technique can be used to prove the formulas in general.
If we have prove the integral identity for some n, then for n+ 1 we have∫ ∞

0

xn+1e−xdx = −xn+1e−x
∣∣∞
0

+

∫ ∞
0

(n+ 1)xne−xdx = (n+ 1) · n! = (n+ 1)!.
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Now we return to the problem and start with the function 1.

1 · 1 =

∫ ∞
0

e−xdx = 1.

Hence the function 1 is an normal basis of the space spanned by 1, x, x2 under the
prescribed norm; use q1 to denote the constant function 1.

Since q1(x) ·x =
∫∞

0
xe−xdx = 1, we know that x−1 ·q1(x) = x−1 is orthogonal

to the function q1(x) = 1. We calculate the norm of x− 1 as follows

‖x− 1‖2 =

∫ ∞
0

(x− 1)2e−xdx =

∫ ∞
0

(
x2e−x − 2xe−x + e−x

)
dx = 2!− 2× 1 + 1 = 1.

Hence, we may take q2 = x− 1 as the second vector of the orthonormal basis of the
space.

Now, we calculate q1 · x2 =
∫∞

0
x2e−xdx = 2 and q2 · x2 =

∫∞
0
x2(x− 1)e−xdx =

3!− 2! = 4. Hence x2− 4q2(x)− 2q1(x) = x2− 4x+ 2 is orthogonal to the functions
q1(x) and q2(x).

‖x2 − 4x+ 2‖2 =

∫ ∞
0

(x2 − 4x+ 2)2e−xdx =

∫ ∞
0

(
x4 − 8x3 + 20x2 − 16x+ 4

)
dx

= 4!− 8× 3! + 20× 2!− 16× 1 + 4 = 4.

Hence, we should take q3(x) = 1
2
x2 − 2x+ 1.

REMARK: the polynomials that we obtain by this process (with a slightly dif-
ferent sign convention) are called the Laguerre polynomials ; you can find out a lot
more about these famous polynomials by googling this name.
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