18.06 Problem Set 4

Due Wednesday, 11 March 2008 at 4pm in 2-106.

1. A is an $m \times n$ matrix of rank r. Suppose there are right-hand-sides \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
(a) What are all the inequalities $(<$ or $\leq)$ that must be true between m, n, and r ?
(b) $A^{T} \mathbf{y}=\mathbf{0}$ has solutions other than $\mathbf{y}=\mathbf{0}$. Why must this be true?
2. A is an $m \times n$ matrix of rank r. Which of the four fundamental subspaces are the same for:
(a) A and $\binom{A}{A}$
(b) $\binom{A}{A}$ and $\left(\begin{array}{ll}A & A \\ A & A\end{array}\right)$

Explain why all three matrices $A,\binom{A}{A}$, and $\left(\begin{array}{cc}A & A \\ A & A\end{array}\right)$ must have the same rank r.
3. Find a basis for each of the four subspaces for

$$
A=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

4. True or false (give a reason if true, or a counterexample if false):
(a) A and A^{T} have the same number of pivots
(b) A and A^{T} have the same left nullspace
(c) If the $C(A)=C\left(A^{T}\right)$, then $A=A^{T}$.
(d) If $A^{T}=-A$, then the row space of A is the same as the column space of A.
5. Use the Matlab command $A=\operatorname{rand}(10,5)$; to make a random 10×5 matrix A, and $B=\operatorname{rand}(5,9)$ to make a random 5×9 matrix B. Then use the command $[\mathrm{R}, \mathrm{p}]=\operatorname{rref}(\mathrm{A} * \mathrm{~B})$; to find the rowreduced echelon form R and a list p of the pivot columns. Using this information, give bases for the nullspace, column space, and row space of $A B$.
6. Explain why the following statement must be true: if a subspace S is contained in another subspace V, then the orthogonal complement V^{\perp} is contained in the orthogonal complement S^{\perp}.
7. If $A^{T} A \mathbf{x}=0$ then $A \mathbf{x}=0$. Reason: $A^{T} A \mathbf{x}=0$ means that $A \mathbf{x}$ in the nullspace of \qquad $A \mathbf{x}$ is also in the \qquad space of A. These two spaces are \qquad so their only intersection is $A \mathbf{x}=0$. Thus, $A^{T} A$ has the same nullspace as A. (We derive this in another way in class.)
8. Suppose you have two matrices V and W such that $C(V)$ and $C(W)$ are orthogonal subspaces. What is $V^{T} W$?
9. Suppose L is a one-dimensional subspace (a line through the origin) in \mathbb{R}^{3}. Its orthogonal complement L^{\perp} is the \qquad perpendicular to L. Then $\left(L^{\perp}\right)^{\perp}$ is a \qquad perpendicular to L^{\perp}, and in fact $\left(L^{\perp}\right)^{\perp}$ is the same as \qquad
10. Let N be a matrix whose columns are a basis for the nullspace of A. Then the nullspace of N^{T} is the
\qquad space of A.
11. Let A be the matrix

$$
A=\left(\begin{array}{lll}
3 & 6 & 6 \\
4 & 8 & 8
\end{array}\right)
$$

(a) Find the projection matrix P_{C} onto $C(A)$.
(b) Find the projection matrix P_{R} onto the row space of A
(c) Compute $P_{C} A P_{R}$. Explain your result.
(d) For any matrix A (not necessarily the one above), with P_{C} and P_{R} defined as the projection matrices onto A 's column and row space respectively, conclude that you would get $P_{C} A P_{R}=$
12. Find the projection matrix P onto the plane $x+2 y-z=0$ in two ways:
(a) Choose two vectors in the plane and make them the columns of a matrix A. The plane is the column space. Then compute $P=A\left(A^{T} A\right)^{-1} A^{T}$.
(b) Write a vector \mathbf{e} that is perpendicular to that plane. Compute the matrix $Q=\mathbf{e e}^{T} / \mathbf{e}^{T} \mathbf{e}$ that projects onto the \mathbf{e} direction. Then compute $\mathbf{P}=I-Q$.
13. The nullspace of A^{T} is \qquad to the column space $C(A)$, so if $A^{T} \mathbf{b}=0$ then the projection of b onto $C(A)$ should be $\mathbf{p}=$ \qquad . Check that $P \mathbf{b}$ gives this answer, where P is the projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$.
14. Explain why one must have $P^{2}=P$, from the definition of the projection matrix P onto the column space of a matrix A (if we take a vector \mathbf{b} and project it to the column space to get $P \mathbf{b}$, then project it again, we must get \qquad). Check explicitly that this is true from the formula $P=A\left(A^{T} A\right)^{-1} A^{T}$.

