18.06 Problem Set 4

Due Wednesday, 11 March 2008 at 4pm in 2-106.

- 1. *A* is an $m \times n$ matrix of rank *r*. Suppose there are right-hand-sides **b** for which $A\mathbf{x} = \mathbf{b}$ has no solution.
 - (a) What are all the inequalities ($< \text{ or } \le$) that must be true between *m*, *n*, and *r*?
 - (b) $A^T \mathbf{y} = \mathbf{0}$ has solutions other than $\mathbf{y} = \mathbf{0}$. Why must this be true?
- 2. A is an $m \times n$ matrix of rank r. Which of the four fundamental subspaces are the same for:
 - (a) A and $\begin{pmatrix} A \\ A \end{pmatrix}$ (b) $\begin{pmatrix} A \\ A \end{pmatrix}$ and $\begin{pmatrix} A & A \\ A & A \end{pmatrix}$

Explain why all three matrices A, $\begin{pmatrix} A \\ A \end{pmatrix}$, and $\begin{pmatrix} A & A \\ A & A \end{pmatrix}$ must have the same rank r.

3. Find a basis for each of the four subspaces for

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

- 4. True or false (give a reason if true, or a counterexample if false):
 - (a) A and A^T have the same number of pivots
 - (b) A and A^T have the same left nullspace
 - (c) If the $C(A) = C(A^T)$, then $A = A^T$.
 - (d) If $A^T = -A$, then the row space of A is the same as the column space of A.
- 5. Use the Matlab command A = rand(10,5); to make a random 10×5 matrix A, and B = rand(5,9) to make a random 5×9 matrix B. Then use the command [R,p] = rref(A*B); to find the row-reduced echelon form R and a list p of the pivot columns. Using this information, give bases for the nullspace, column space, and row space of AB.
- 6. Explain why the following statement must be true: if a subspace S is contained in another subspace V, then the orthogonal complement V^{\perp} is contained in the orthogonal complement S^{\perp} .
- 7. If $A^T A \mathbf{x} = 0$ then $A \mathbf{x} = 0$. Reason: $A^T A \mathbf{x} = 0$ means that $A \mathbf{x}$ in the nullspace of ______. A \mathbf{x} is also in the _______ space of A. These two spaces are _______, so their only intersection is $A \mathbf{x} = 0$. Thus, $A^T A$ has the same nullspace as A. (We derive this in another way in class.)
- 8. Suppose you have two matrices V and W such that C(V) and C(W) are orthogonal subspaces. What is $V^T W$?
- Suppose L is a one-dimensional subspace (a line through the origin) in R³. Its orthogonal complement L[⊥] is the _____ perpendicular to L. Then (L[⊥])[⊥] is a _____ perpendicular to L[⊥], and in fact (L[⊥])[⊥] is the same as _____.
- 10. Let N be a matrix whose columns are a basis for the nullspace of A. Then the nullspace of N^T is the ______ space of A.

11. Let A be the matrix

$$A = \begin{pmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{pmatrix}.$$

- (a) Find the projection matrix P_C onto C(A).
- (b) Find the projection matrix P_R onto the row space of A
- (c) Compute P_CAP_R . Explain your result.
- (d) For any matrix A (not necessarily the one above), with P_C and P_R defined as the projection matrices onto A's column and row space respectively, conclude that you would get P_CAP_R =
- 12. Find the projection matrix P onto the plane x + 2y z = 0 in two ways:
 - (a) Choose two vectors in the plane and make them the columns of a matrix A. The plane is the column space. Then compute $P = A(A^T A)^{-1}A^T$.
 - (b) Write a vector **e** that is perpendicular to that plane. Compute the matrix $Q = \mathbf{e}\mathbf{e}^T/\mathbf{e}^T\mathbf{e}$ that projects onto the **e** direction. Then compute $\mathbf{P} = I Q$.
- 13. The nullspace of A^T is ______ to the column space C(A), so if $A^T \mathbf{b} = 0$ then the projection of **b** onto C(A) should be $\mathbf{p} =$ _____. Check that $P\mathbf{b}$ gives this answer, where P is the projection matrix $P = A(A^T A)^{-1}A^T$.
- 14. Explain why one must have $P^2 = P$, from the definition of the projection matrix P onto the column space of a matrix A (if we take a vector **b** and project it to the column space to get P**b**, then project it again, we must get ______). Check explicitly that this is true from the formula $P = A(A^TA)^{-1}A^T$.