18.06 Problem Set 2

Due Wednesday, 18 February 2008 at 4 pm in the undergrad. math office.

1. What threee elimination matrices E_{21}, E_{31}, and E_{32} put A into upper-triangular form $E_{32} E_{31} E_{21} A=$ U ? Using these, compute the matrix L (and U) to factor $A=L U$.

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 5 \\
0 & 4 & 0
\end{array}\right)
$$

2. Suppose we have a 3×3 lower-triangular L matrix of the form

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right)
$$

(a) When you do the usual Gaussian-elimination steps on L, what matrix do you get?
(b) When you do the same elimination steps to I, what matrix do you get? (Hint: you can write the answer in terms of L very simply.)
(c) When you apply the same steps to a matrix $A=L U$, what matrix do you get (write your answer in terms of L, U, and/or A).
(It is possible to answer this question without doing any calculations.)
3. Without computing A or A^{-1} or A^{-2} or A^{2} explicitly, compute $A^{-1} x+A^{-2} y$, where you are given the following LU factorization $A=L U$:

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad U=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad x=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad y=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

(Solve a sequence of triangular systems to get your answer at the end.)
4. Normally, we eliminate downwards to produce an upper-triangular matrix U from a matrix A; suppose we eliminate upwards instead to convert A into lower-triangular form. (That is, use the last row to produce zeros above the last pivot, the second-to-last row to produce zeros above the second-to-last pivot, and so on.) Do this for the following matrix A, and by doing so find the factors $A=U L$.

$$
A=\left(\begin{array}{lll}
5 & 3 & 1 \\
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

5. (a) Write down a permutation matrix P that reverses the order of the rows of a 3×3 matrix. Check that $P^{2}=I$.
(b) Given a lower-triangular matrix L, show how you can multiply (possibly multiple times) by P to get an upper-triangular matrix.
(c) Multiply this P on both the left and the right of the matrix A from the previous problem to obtain $P A P$.
(d) Show how to use your factorization $A=U L$ from the previous problem to get an LU factorization $P A P=L^{\prime} U^{\prime}$ where L^{\prime} and U^{\prime} are lower- and upper-triangular matrices, respectively. That is, show how to get L^{\prime} and U^{\prime} from your answers U and L of the previous problem merely by permutations, with no additional calculation (you do not need to re-do the elimination process for $P A P$). Hint: you can freely insert a factor of $P^{2}=I$ where ever you want.
6. Come up with 2×2 matrices A and B, and check by direct calculation that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}} \neq$ $A^{\mathrm{T}} B^{\mathrm{T}}$.
7. Express $\left((A B)^{-1}\right)^{\mathrm{T}}$ in terms of $\left(A^{-1}\right)^{\mathrm{T}}$ and $\left(B^{-1}\right)^{\mathrm{T}}$.
8. If L is a lower-triangular matrix, then $\left(L^{-1}\right)^{\mathrm{T}}$ is \qquad triangular.
9. Find a 4×4 permutation matrix P with $P^{4} \neq I$.
10. Suppose R is $m \times n$ and $A=A^{\mathrm{T}}$ is a symmetric $m \times m$ matrix.
(a) Using R^{T}, A, and R, form a new symmetric matrix (transpose it to check that it is symmetric). How many rows and columns does your matrix have?
(b) Show that $B=R^{\mathrm{T}} R$ has no negative numbers on its diagonal. (Hint: first, explain what vector x gives the i-th diagonal element of B by $b_{i i}=x^{\mathrm{T}} B x$. Then explain why $b_{i i} \geq 0$ for $B=R^{\mathrm{T}} R$.)
11. Suppose $Q^{\mathrm{T}}=Q^{-1}$ for some matrix Q, so that $Q^{\mathrm{T}} Q=I$. Show that the columns of Q are orthogonal unit vectors, i.e. each column q_{i} has length $\left\|q_{i}\right\|^{2}=q_{i}^{\mathrm{T}} q_{i}=1$, and $q_{i}^{\mathrm{T}} q_{j}=0$ for two different columns $i \neq j$.
12. Say whether the following sets of matrices form a subspace of the set of all matrices (under ordinary matrix addition and multiplication by scalars); give a counter-example (something that violates the rules for subspaces) for cases that are not a subspace.
(a) invertible matrices.
(b) singular matrices
(c) symmetric matrices $\left(A=A^{\mathrm{T}}\right)$
(d) anti-symmetric matrices $\left(A=-A^{\mathrm{T}}\right)$
(e) unsymmetric matrices $\left(A \neq A^{\mathrm{T}}\right)$
13. Find a square matrix A where $C\left(A^{2}\right)$ (the column space of A^{2}) is smaller than $C(A)$.
14. An $n \times n$ matrix A has $C(A)=\mathbf{R}^{n}$ if and only if A is a/an \qquad matrix.
