18.06 Problem Set 2

Due Wednesday, 18 February 2008 at 4pm in the undergrad. math office.

1. What three elimination matrices E_{21} , E_{31} , and E_{32} put A into upper-triangular form $E_{32}E_{31}E_{21}A = U$? Using these, compute the matrix L (and U) to factor A = LU.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{pmatrix}$$

2. Suppose we have a 3×3 lower-triangular L matrix of the form

$$L = \begin{pmatrix} 1 & 0 & 0\\ \ell_{21} & 1 & 0\\ \ell_{31} & \ell_{32} & 1 \end{pmatrix}.$$

- (a) When you do the usual Gaussian-elimination steps on L, what matrix do you get?
- (b) When you do the *same* elimination steps to *I*, what matrix do you get? (Hint: you can write the answer in terms of *L* very simply.)
- (c) When you apply the same steps to a matrix A = LU, what matrix do you get (write your answer in terms of L, U, and/or A).

(It is possible to answer this question without doing any calculations.)

3. Without computing A or A^{-1} or A^{-2} or A^2 explicitly, compute $A^{-1}x + A^{-2}y$, where you are given the following LU factorization A = LU:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad y = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

(Solve a sequence of triangular systems to get your answer at the end.)

4. Normally, we eliminate downwards to produce an upper-triangular matrix U from a matrix A; suppose we eliminate *upwards* instead to convert A into *lower*-triangular form. (That is, use the last row to produce zeros above the last pivot, the second-to-last row to produce zeros above the second-to-last pivot, and so on.) Do this for the following matrix A, and by doing so find the factors A = UL.

$$A = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 5. (a) Write down a permutation matrix P that reverses the order of the rows of a 3×3 matrix. Check that $P^2 = I$.
 - (b) Given a lower-triangular matrix L, show how you can multiply (possibly multiple times) by P to get an upper-triangular matrix.
 - (c) Multiply this P on both the left and the right of the matrix A from the previous problem to obtain PAP.
 - (d) Show how to use your factorization A = UL from the previous problem to get an LU factorization PAP = L'U' where L' and U' are lower- and upper-triangular matrices, respectively. That is, show how to get L' and U' from your answers U and L of the previous problem merely by permutations, with no additional calculation (you do *not* need to re-do the elimination process for PAP). Hint: you can freely insert a factor of $P^2 = I$ where ever you want.

- 6. Come up with 2×2 matrices A and B, and check by direct calculation that $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} \neq A^{\mathrm{T}}B^{\mathrm{T}}$.
- 7. Express $((AB)^{-1})^{\mathrm{T}}$ in terms of $(A^{-1})^{\mathrm{T}}$ and $(B^{-1})^{\mathrm{T}}$.
- 8. If L is a lower-triangular matrix, then $(L^{-1})^{T}$ is ______ triangular.
- 9. Find a 4×4 permutation matrix P with $P^4 \neq I$.
- 10. Suppose R is $m \times n$ and $A = A^{T}$ is a symmetric $m \times m$ matrix.
 - (a) Using R^{T} , A, and R, form a new symmetric matrix (transpose it to check that it is symmetric). How many rows and columns does your matrix have?
 - (b) Show that $B = R^{T}R$ has no negative numbers on its diagonal. (Hint: first, explain what vector x gives the *i*-th diagonal element of B by $b_{ii} = x^{T}Bx$. Then explain why $b_{ii} \ge 0$ for $B = R^{T}R$.)
- 11. Suppose $Q^{T} = Q^{-1}$ for some matrix Q, so that $Q^{T}Q = I$. Show that the columns of Q are orthogonal unit vectors, i.e. each column q_i has length $||q_i||^2 = q_i^{T}q_i = 1$, and $q_i^{T}q_j = 0$ for two different columns $i \neq j$.
- 12. Say whether the following sets of matrices form a subspace of the set of all matrices (under ordinary matrix addition and multiplication by scalars); give a counter-example (something that violates the rules for subspaces) for cases that are *not* a subspace.
 - (a) invertible matrices.
 - (b) singular matrices
 - (c) symmetric matrices $(A = A^{T})$
 - (d) anti-symmetric matrices $(A = -A^{T})$
 - (e) unsymmetric matrices $(A \neq A^{T})$
- 13. Find a square matrix A where $C(A^2)$ (the column space of A^2) is smaller than C(A).
- 14. An $n \times n$ matrix A has $C(A) = \mathbb{R}^n$ if and only if A is a/an _____ matrix.