
18.06 Problem Set 1 Solution
Due Wednesday, 11 February 2009 at 4 pm in 2-106.

Total: 145 points

Problem 1: If ‖~v‖ = 7 and ‖~w‖ = 3, what are the smallest and largest possible
values of ‖~v + ~w‖ and ~v · ~w?

Solution (10 points)
‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖ = 10. ‖~v + ~w‖ ≥ ‖~v‖ − ‖~w‖ = 4. (5pts)
|~v · ~w| ≤ ‖~v‖ · ‖~w‖ = 21. So −21 ≤ ~v · ~w ≤ 21. (5pts)
The maximum is achieved when the vectors ~v and ~w are parallel and pointing to

the same direction, for example, ~v = (7, 0, 0, . . . ) and ~w = (3, 0, 0, . . . ); the minimum
is achieved when they are parallel but pointing to opposite directions, for instance,
~v = (7, 0, 0, . . . ) and ~w = (−3, 0, 0, . . . ).

REMARK: We should try not to restrict ourselves to the 3-dimensional case.
The statement of this problem works for vectors in arbitrary dimensional space.

Problem 2: Let A and B be 4 × 4 matrices, and divide each of them into 2 × 2

chunks via A =

(
A1 A2

A3 A4

)
and B =

(
B1 B2

B3 B4

)
, where A1 is the upper-left 2×2

corner, A2 is the upper-right 2 × 2 corner, and so on. Let C = AB be the 4 × 4

product of A and B, and similarly divide C into 2× 2 chunks as C =

(
C1 C2

C3 C4

)
.

(a) Give formulas for these 2 × 2 chunks C1...4 in terms of matrix products and
sums of the chunks A1...4 and B1...4 (your final formulas should not reference
the individual numbers within those chunks).

(b) Justify your formulas by an example (come up with 4 × 4 matrices A and B
with nonzero entries, multiply them to get C, and compare to your formulas
in terms of 2× 2 chunks—it is acceptable to check just one of the output 2× 2
chunks, say C2).

Solution (15 points = 10+5)
(a) Similar to usual matrix multiplication, matrix multiplication by blocks for-

mally has the same form.

C1 = A1B1 + A2B3 , C2 = A1B2 + A2B4,

C3 = A3B1 + A4B3 , C4 = A3B2 + A4B4.

1



In other words,(
A1 A2

A3 A4

)(
B1 B2

B3 B4

)
=

(
A1B1 + A2B3 A1B2 + A2B4

A3B1 + A4B3 A3B2 + A4B4

)
NOTE: the order of A∗ and B∗ cannot be reversed.

(b) For example,

A =


1 0 0 1
0 1 1 1
1 1 0 1
0 1 1 0

 , B =


0 1 0 1
1 1 0 1
1 0 1 1
1 0 1 0

 .

Then C = AB =


1 1 1 1
3 1 2 2
2 2 1 2
2 1 1 2

 and

C1 =

(
1 0
0 1

)(
0 1
1 1

)
+

(
0 1
1 1

)(
1 0
1 0

)
=

(
0 1
1 1

)
+

(
1 0
2 0

)
=

(
1 1
3 1

)
,

C2 =

(
1 0
0 1

)(
0 1
0 1

)
+

(
0 1
1 1

)(
1 1
1 0

)
=

(
0 1
0 1

)
+

(
1 0
2 1

)
=

(
1 1
2 2

)
,

C3 =

(
1 1
0 1

)(
0 1
1 1

)
+

(
0 1
1 0

)(
1 0
1 0

)
=

(
1 2
1 1

)
+

(
1 0
1 0

)
=

(
2 2
2 1

)
,

C4 =

(
1 1
0 1

)(
0 1
0 1

)
+

(
0 1
1 0

)(
1 1
1 0

)
=

(
0 2
0 1

)
+

(
1 0
1 1

)
=

(
1 2
1 2

)
.

Problem 3: Invent a 3 × 3 “magic” matrix M3 with entries 0, 1, . . . , 8, such that
all rows and columns and diagonals add to 12 (e.g. the first row could be 7,2,3).
Compute the products:

M3

 1
1
1

 ,
(

1 1 1
)
M3, M3

 1 2 3
1 2 3
1 2 3

 , M3

 1 1 1
2 2 2
3 3 3

 .

Solution (10 points)

2



For example, take M3 =

 7 0 5
2 4 6
3 8 1

, we have

M3

 1
1
1

 =

 12
12
12

 ,
(

1 1 1
)
M3 =

(
12 12 12

)
,

M3

 1 2 3
1 2 3
1 2 3

 =

 12 24 36
12 24 36
12 24 36

 , M3

 1 1 1
2 2 2
3 3 3

 =

 22 22 22
28 28 28
22 22 22

 .

REMARK: We get these results because multiplying by (1 1 1) is equivalent
to just summing the rows (or columns), which by construction gives 12. Similarly,
multiplying by (2 2 2) gives 24, etcetera. Multiplying by the matrix in the second
to last problem just multiplies M3 by each column, giving 12, 24, and 36. However,
in the last part the columns are 1, 2, and 3, which does not just sum the rows of
M3 and hence does not give the same value in each row.

Problem 4: Choose a coefficient b that makes this system singular. Then choose a
right-hand side g tha makes it solvable. Find two solutions in that singular case.

3x + 4y = 16

4x + by = g

Solution (10 points)
We use Gauss elimination process.(

3 4 16
4 b g

)
;

(
3 4 16
0 b− 16/3 g − 64/3

)
.

So the system is singular if b = 16/3. It has solvable when g = 64/3. In this case,
solutions to the linear system are just solutions for 3x + 4y = 16. We may take the
values of one variable arbitrarily and solve for the other. For example,{

x = 0
y = (16− 3 · 0)/4 = 4

,

{
x = 4
y = (16− 3 · 4)/4 = 1

.

Problem 5: Come up with 3× 3 matrices A for problems Ax = b such that:

3



(a) two row exchanges are needed in the elimination process to get a triangular
form; then solve your system for some nonzero right-hand-side b.

(b) a row exchange is needed to keep going in elimination, but it still breaks down
in a subsequent step. Give a right hand side b so that there is still a solution,
and give a solution x.

Solution (20 points = 10+10)
(a) We need a non-singular system, where the Gauss elimination method suc-

ceeds, but two row-exchanges are needed in the process. For example, 0 1 1 3
0 0 1 7
1 0 1 5

 ;

 1 0 1 5
0 0 1 7
0 1 1 3

 ;

 1 0 1 5
0 1 1 3
0 0 1 7

 .

(b) We need a singular system where elimination fails – but only after at least
one successful step that required a row exchange. For example, 0 2 0 3

1 1 1 7
1 3 1 10

 ;

 1 1 1 7
0 2 0 3
1 3 1 10

 ;

 1 1 1 7
0 2 0 3
0 2 0 3

 ;

 1 1 1 7
0 2 0 3
0 0 0 0

 .

Problem 6: In elimination, we do operations on rows, which corresponds to multi-
plying on the left by elimination matrices. Cal Q. Luss, a Harvard student, suggests
that we should do operations on columns instead (e.g. subtracting a multiple of one
column from another, or swapping two columns).

(a) Do a sequence of these “column elimination” operations on your 3× 3 matrix
from problem 5(a), and show that you can still get an upper triangular matrix.
What happens if you try to do column elimination on your matrix from 5(b)?

(b) Suppose, for a matrix A, that one of our “column elimination” steps consists
of subtracting 3 times column 1 from column 2. Express this operation in
matrix form, as A multiplied somehow by some “column elimination” matrix.
Check your answer on your 3× 3 matrix from 5(a).

(c) Clearly explain to Cal why “column elimination” is not particularly useful for
solving Ax = b, even though you can convert A to a triangular matrix (explain
what happens to the system of equations, perhaps in terms of elimination
matrices).

4



(d) Write down a different set of linear equations in terms of your 3× 3 matrix A
from 5(a) that is solvable by column elimination (hint: think of row vectors).

Solution (20 points=5+5+5+5)
(a) Using column elimination from right to left and the most bottom nonzero

element as the pivot element, we can get upper triangular matrices in both cases. 0 1 1
0 0 1
1 0 1

 ;

 −1 1 1
−1 0 1
0 0 1

 ;

 1 −1 1
0 −1 1
0 0 1

 .

 0 2 0
1 1 1
1 3 1

 ;

 0 2 0
0 −2 1
0 0 1

 .

In the case 5(b), we can make the first column all zero. This suggests that if a
matrix is singular for row elimination then it is also singular for column elimination.

REMARK: The equivalence of being singular for row elimination and column
elimination is true in general. However, the proof is not obvious and will be consid-
ered later in the course.

(b) Just as multiplication by an elimination matrix on the left can be viewed as
taking linear combinations of the rows of A, multiplying by an elimination matrix on
the right can be viewed as taking linear combinations of the columns of A. Hence,
Subtracting 3 times column 1of A from column 2 of A is equivalent to making the
second column of the elimination matrix to be (−3 1 0)T. Thus, this operation is

to send A to A

1 −3 0
0 1 0
0 0 1

. For example,

 0 1 1
0 0 1
1 0 1

 1 −3 0
0 1 0
0 0 1

 =

 0 1 1
0 0 1
1 −3 1

 .

REMARK: The actual elimination matrices will be lower-triangular, not upper-
triangular as in the example here, since really you subtract later columns from earlier
ones and not vice-versa, as seen in part (a).

(c) Row elimination works because it corresponds to multiplying both sides of
Ax = b on the left by a sequence of elimination matrices to simplify A. For column

5



elimination, we need to multiply A on the right by elimination matrices, but we
can’t simply multiply both sides of Ax = b on the right by elimination matrices
because x is in the way (in fact, it doesn’t make sense to multiply a column vector
by a matrix on the right).

If anything, you would have to put the elimination matrices in the ”middle”
of Ax as AEE−1x = UE−1x where E is the product of the elimination matrices.
Actually, you could argue that this is not completely crazy, since E and E−1 are
lower triangular — you have effectively formed a UL factorization of A (analogous
to LU). You then have an equation of the form ULx = b, which can be solved easily
as a sequence of two triangular systems. So, Cal is vindicated after all. [Note to
grader: students get full marks if they don’t realize this, and just make an argument
equivalent to the first paragraph.]

(d) Row elimination can be used to solve equations of the kind

(
x1 x2 x3

) 0 1 1
0 0 1
1 0 1

 =
(
1 2 3

)
.

We proceed similar to column operations as follows:
0 1 1
0 0 1
1 0 1
1 2 3

 ;


−1 1 1
−1 0 1
0 0 1
−2 2 3

 ;


1 −1 1
0 −1 1
0 0 1
2 −2 3


So x1 = 2, −x1 − x2 = −2⇒ x2 = 0, and x1 + x2 + x3 = 3⇒ x3 = 1.

Problem 7: Suppose A is invertible and you exchange its first two rows to obtain
a new matrix B. Is the new matrix B invertible, and how would you find B−1 from
A−1?

Solution (10 points)
Since B is obtained from A by exchanging the first two rows, we know

B = MA with M =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


6



So, BA−1M = MAA−1M = MM = I and hence B−1 = A−1M . In other words,
B−1 is obtained from A−1 by exchanging the first two columns.

Problem 8: If the product C = AB is invertible (and A and B are square), find a
formula for A−1 that involves C−1 and B. (Hence, it is not possible to multiply a
non-invertible matrix on the by another matrix and obtain an invertible matrix as
a result.)

Solution (10 points)
Note that ABC−1 = CC−1 = I. So A−1 = BC−1.
Remark: In general, if A = BC with B or C invertible, we can multiply

both sides of the equation by B−1 on left or C−1 on right, respectively. Then,
we obtain B−1A = C or AC−1 = B. We would like to emphasize that when
dealing with matrices, we need to carefully distinguish left multiplications and right
multiplications. In very rare cases, they might be equal.

Problem 9: Solve the system Ax = b for

A =

 1 0 0
2 1 3
0 0 1

 , b =

 1
2
3


using elimination and backsubstitution. Compute A−1 using Gauss–Jordan, and
verify that A−1b gives the same x.

Solution (20 points)  1 0 0 1
2 1 3 2
0 0 1 3

 ;

 1 0 0 1
0 1 3 0
0 0 1 3

 .

By backsubstitution, x3 = 3, x2 + 3x3 = 0, and x1 = 1. Hence, we have
x1 = 1

x2 = −9

x3 = 3

Calculating A−1 via Gauss–Jordan. 1 0 0 1 0 0
2 1 3 0 1 0
0 0 1 0 0 1

 ;

 1 0 0 1 0 0
0 1 3 −2 1 0
0 0 1 0 0 1

 ;

 1 0 0 1 0 0
0 1 0 −2 1 −3
0 0 1 0 0 1

 .

7



So A−1b is given by

A−1b =

 1 0 0
−2 1 −3
0 0 1

 1
2
3

 =

 1
−9
3


The two results coincide.

Problem 10: Solve the equations in problem 9 using Matlab. (on Athena: add

matlab && matlab to run Matlab). You can do this by the commands:
A = [1 0 0; 2 1 3; 0 0 1]

b = [1; 2; 3]

x = A \ b

and also check your A−1 by computing the inverse in Matlab with inv(A).

Solution (10 points)

>> A = [1 0 0; 2 1 3; 0 0 1]

A =

1 0 0

2 1 3

0 0 1

>> b = [1; 2; 3]

b =

1

2

3

>> x = A \ b

x =

1

-9

3

8



>> inv(A)

ans =

1 0 0

-2 1 -3

0 0 1

Problem 11: Now, let’s solve larger systems in Matlab. Much larger systems. To
save the trouble of coming up with equations by hand, we’ll let Matlab choose them
at random using the rand(m,n) command, which creates a random m× n matrix:

A = rand(100,100);

b = rand(100,1);

tic; x = A \ b; toc

Notice the semicolons (;) after the commands: this suppresses the output, which
is useful if you don’t want to print out the 100× 100 matrix A. The above code was
for 100 × 100. The tic and toc commands print out the time, in seconds, for the
x = A \ b command between them. Now try doubling this to 200. Then to 400.
Then to 800. Then to 1600. By what factor, on average, does the computation time
increase each time you double the number of rows and columns?

Solution (10 points)

>> maxNumCompThreads(1);

>> A = rand(100,100);

>> b = rand(100,1);

>> tic; x = A \ b; toc

Elapsed time is 0.000723 seconds.

>> A = rand(200,200);

>> b = rand(200,1);

>> tic; x = A \ b; toc

Elapsed time is 0.003349 seconds.

>> A = rand(400,400);

>> b = rand(400,1);

>> tic; x = A \ b; toc

9



Elapsed time is 0.017764 seconds.

>> A = rand(800,800);

>> b = rand(800,1);

>> tic; x = A \ b; toc

Elapsed time is 0.117945 seconds.

>> A = rand(1600,1600);

>> b = rand(1600,1);

>> tic; x = A \ b; toc

Elapsed time is 0.761077 seconds.

REMARK: The reason that we have the first line of the code is because we want
to tell the computer to use only one processor when computing the result.

Professor Johnson wrote a loop computing more examples from n=10 to n=10000
and plotting the results, on his 2.83Gz Intel Core 2 Xeon. Here is his code

>> maxNumCompThreads(1)

ans =

1

>> n = round(logspace(1,4,20))

n =

Columns 1 through 6

10 14 21 30 43 62

Columns 7 through 12

89 127 183 264 379 546

Columns 13 through 18

785 1129 1624 2336 3360 4833

Columns 19 through 20

6952 10000

10



>> for i = 1:length(n)

>> A = rand(n(i),n(i));

>> b = rand(n(i),1);

>> tic; x = A \ b; t(i) = toc;

>> end

>> format long

>> t

t =

Columns 1 through 3

0.000090000000000 0.000029000000000 0.000039000000000

Columns 4 through 6

0.000060000000000 0.000174000000000 0.000186000000000

Columns 7 through 9

0.000511000000000 0.000614000000000 0.001439000000000

Columns 10 through 12

0.003521000000000 0.007885000000000 0.019018000000000

Columns 13 through 15

0.052252000000000 0.165369000000000 0.447228000000000

Columns 16 through 18

1.225485000000000 3.363740000000000 9.558894000000000

Columns 19 through 20

26.084814000000001 75.238491999999994

11



>> loglog(n,t, ’ro-’, n, n.^3 / 10^10, ’k-’, n, n.^2 / 10^7, ’k--’)

>> xlabel(’size n of the matrix’)

>> ylabel(’time to solve A \ b (seconds)’)

>> legend(’time (s)’, ’n^3/10^{10} for comparison’, ’n^2/10^7 for

comparison’,’Location’,’SouthEast’)

101 102 103 104
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

size n of the matrix

tim
e 

to
 s

ol
ve

 A
 \ 

b 
(s

ec
on

ds
)

 

 

time (s)
n3/1010 for comparison
n2/107 for comparison

This way, from the results you can clearly see that it asymptotically approaches
roughly n3 scaling (not n2 scaling), consistent with the prediction in class based on
the operation count for Gaussian elimination. However, from the same results you
can also see that the pure n3 scaling is not obtained until fairly large n, so for the
moderate n asked for by the pset the students will see less than a factor of 8 for
each doubling of n, as we noticed in our data above.

12


