18.06 Final Solution

Hold on Tuesday, 19 May 2009 at 9am in Walker Gym.
Total: 100 points.

Problem 1:

A sequence of numbers $f_{0}, f_{1}, f_{2}, \ldots$ is defined by the recurrence

$$
f_{k+2}=3 f_{k+1}-f_{k},
$$

with starting values $f_{0}=1, f_{1}=1$. (Thus, the first few terms in the sequence are $1,1,2,5,13,34,89, \ldots$..)
(a) Defining $\mathbf{u}_{k}=\binom{f_{k+1}}{f_{k}}$, re-express the above recurrence as $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$, and give the matrix A.
(b) Find the eigenvalues of A, and use these to predict what the ratio f_{k+1} / f_{k} of successive terms in the sequence will approach for large k.
(c) The sequence above starts with $f_{0}=f_{1}=1$, and $\left|f_{k}\right|$ grows rapidly with k. Keep $f_{0}=1$, but give a different value of f_{1} that will make the sequence (with the same recurrence $\left.f_{k+2}=3 f_{k+1}-f_{k}\right)$ approach zero $\left(f_{k} \rightarrow 0\right)$ for large k.

Solution (18 points $=6+6+6$)

(a) We have

$$
\binom{f_{k+2}}{f_{k+1}}=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right)\binom{f_{k+1}}{f_{k}} \quad \Rightarrow \quad A=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right) .
$$

(b) Eigenvalues of A are roots of $\operatorname{det}(A-\lambda I)=\lambda^{2}-3 \lambda+1=0$. They are $\lambda_{1}=\frac{3+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{3-\sqrt{5}}{2}$. Note that $\lambda_{1}>\lambda_{2}$, so the ratio f_{k+1} / f_{k} will approach $\lambda_{1}=\frac{3+\sqrt{5}}{2}$ for large k.
(c) Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the eigenvectors with eigenvalues λ_{1} and λ_{2}, respectively. So, we can write $\mathbf{u}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ and then $\mathbf{u}_{k}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+c_{2} \lambda_{2}^{k} \mathbf{v}_{2}$. If we need $f_{k} \rightarrow 0$,
we have to make $c_{1}=0$. In other words, \mathbf{u}_{0} must be proportional to the eigenvector v_{2}.

$$
A-\lambda_{2} I=\left(\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & -1 \\
1 & -\frac{3-\sqrt{5}}{2}
\end{array}\right) \quad \Rightarrow \quad \mathbf{v}_{2}=\binom{\frac{3-\sqrt{5}}{2}}{1} .
$$

Hence, we need to take $f_{1}=\frac{3-\sqrt{5}}{2}$ so that f_{k} will approach zero for large k.

Problem 2: For the matrix $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & 0\end{array}\right)$ with rank 2, consider the system of equations $A \mathbf{x}=\mathbf{b}$.
(i) $A \mathbf{x}=\mathbf{b}$ has a solution whenever \mathbf{b} is orthogonal to some nonzero vector \mathbf{c}. Explicitly compute such a vector c. Your answer can be multiplied by any overall constant, because \mathbf{c} is any basis for the \qquad space of A.
(ii) Find the orthogonal projection \mathbf{p} of the vector $\mathbf{b}=\left(\begin{array}{l}9 \\ 9 \\ 9\end{array}\right)$ onto $C(A)$. (Note: The matrix $A^{\mathrm{T}} A$ is singular, so you cannot use your formula $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ to obtain the projection matrix P onto the column space of A. But I have repeatedly discouraged you from computing P explicitly, so you don't need to be reminded anyway, right?)
(iii) If \mathbf{p} is your answer from (ii), then a solution \mathbf{y} of $A \mathbf{y}=\mathbf{p}$ minimizes what? [You need not answer (ii) or compute \mathbf{y} for this part.]

Solution (18 points $=7+7+4$)
(i) The system of equations $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} lies in the column space of A, which is orthogonal to the left nullspace of A. We solve for a (nonzero) vector \mathbf{c} in the left nullspace using Gaussian elimination, as follows.

$$
A^{\mathrm{T}}=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right) \leadsto\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \leadsto\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathbf{c}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

The answer can by any nonzero multiple of \mathbf{c}, which will be a basis for the left nullspace of A.
(ii) Method 1: Since \mathbf{c} is a basis of the orthogonal complement of the column space $C(A)$, the projection of \mathbf{b} onto $C(A)$ can be computed as

$$
\mathbf{p}=\mathbf{b}-\frac{\mathbf{c}^{T} \mathbf{b} \mathbf{c}}{\|\mathbf{c}\|^{2}}=\left(\begin{array}{l}
9 \\
9 \\
9
\end{array}\right)-\frac{-9}{3}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
6 \\
6 \\
12
\end{array}\right) .
$$

Method 2: (not recommended) We know that \mathbf{p} is the best linear approximation of \mathbf{b}. So we solve

$$
\begin{aligned}
A^{\mathrm{T}} A\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) & =A^{\mathrm{T}}\left(\begin{array}{l}
9 \\
9 \\
9
\end{array}\right), \\
\left(\begin{array}{lll}
6 & 3 & 0 \\
3 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) & =\left(\begin{array}{c}
36 \\
18 \\
0
\end{array}\right)
\end{aligned}
$$

We can get a particular solution $\mathbf{y}=(6,0,0)^{\mathrm{T}}$. (There are other solutions too.) Hence,

$$
\mathbf{p}=A\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
6 \\
6 \\
12
\end{array}\right)
$$

(iii) Since \mathbf{p} is the orthogonal projection of \mathbf{b} onto $C(A)$, A solution \mathbf{y} of $A \mathbf{y}=\mathbf{p}$ minimizes the distance $\|A \mathbf{y}-\mathbf{b}\|$.

Problem 3: True or false. Give a counter-example if false. (You need not provide a reason if true.)
(a) If Q is an orthogonal matrix, then $\operatorname{det} Q=1$.
(b) If A is a Markov matrix, then $d \mathbf{u} / d t=A \mathbf{u}$ approaches some finite constant vector (a "steady state") for any initial condition $\mathbf{u}(0)$.
(c) If S and T are subspaces of \mathbb{R}^{2}, then their intersection (points in both S and T) is also a subspace.
(d) If S and T are subspaces of \mathbb{R}^{2}, then their union (points in either S or T) is also a subspace.
(e) The rank of $A B$ is less than or equal to the ranks of A and B for any A and B.
(f) The rank of $A+B$ is less than or equal to the ranks of A and B for any A and B.

Solution (12 points $=2+2+2+2+2+2$)
(a) False. For example, $Q=(-1)$ is an orthogonal matrix: $Q^{\mathrm{T}} Q=(-1)(-1)=$ (1).

REMARK: In general, for a real orthogonal matrix Q, $\operatorname{det} Q= \pm 1$. This is because $\operatorname{det}\left(Q^{\mathrm{T}} Q\right)=\operatorname{det}(I)=1 \Rightarrow \operatorname{det}(Q)^{2}=\operatorname{det}\left(Q^{\mathrm{T}}\right) \operatorname{det}(Q)=1$.
(b) False. Be careful here that we are discussing differential equations but not the powers of A. For example, $A=(1)$, the differential equation has solution $\mathbf{u}=c e^{t}$ for some constant c, which does not approach to any finite constant vector.

REMARK: It is true that for the Markov process $\mathbf{u}_{k+1}=A \mathbf{u}_{k}, \mathbf{u}_{k}$ approaches some finite constant vector (a "steady state") for any initial condition \mathbf{u}_{0}.
(c) True. Intersections of subspaces are always subspaces.
(d) False. For example, S and T are the x - and y-axes. Then $(1,1)=(1,0)+$ $(0,1)$ is a linear combination of points in the union of S and T, but does not lie in the union itself. So the union of S and T is not a subspace.
(e) Ture. One may see this by arguing as follows. Since the column space of $A B$ is a subspace of the column space of A, the rank of $A B$ is less than or equal to
the rank of A. Similarly, since the row space of $A B$ is a subspace of the row space of B, the rank of $A B$ is less than or equal to the rank of B.
(f) False. $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ both have rank 1. But $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ has rank 2.

REMARK: It is true that $\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$.

Problem 4: Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & 0 & -3 \\
1 & 0 & -1
\end{array}\right)
$$

(a) Find an orthonormal basis for $C(A)$ using Gram-Schmidt, forming the columns of a matrix Q.
(b) Write each step of your Gram-Schmidt process from (a) as a multiplication of A on the \qquad (left or right) by some invertible matrix. Explain how the product of these invertible matrices relates to the matrix R from the QR factorization $A=Q R$ of A.
(c) Gram-Schmidt on another matrix B (of the same size as A) gives the same orthonormal basis (the same Q) as in part (a). Which of the four subspaces, if any, must be the same for the matrices $A A^{\mathrm{T}}$ and $B B^{\mathrm{T}}$? [You can do this part without doing (a) or (b).]

Solution (18 points $=6+6+6$)
(a) From $\mathbf{u}_{1}=(1,1,1,1)^{\mathrm{T}}$, we get $\mathbf{q}_{1}=\mathbf{u}_{1} /\left\|\mathbf{u}_{1}\right\|=\frac{1}{2}(1,1,1,1)^{\mathrm{T}}$.

$$
\begin{aligned}
& \mathbf{v}_{2}=(1,-1,0,0)^{\mathrm{T}} \\
& \mathbf{u}_{2}=\mathbf{v}_{2}-\mathbf{q}_{1}^{\mathrm{T}} \mathbf{v}_{2} \mathbf{q}_{1}=\mathbf{v}_{2}=(1,-1,0,0)^{\mathrm{T}}, \\
& \mathbf{q}_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|=\frac{1}{\sqrt{2}}(1,-1,0,0)^{\mathrm{T}} ; \\
& \mathbf{v}_{3}=(1,-1,-3,-1)^{\mathrm{T}}, \\
& \mathbf{u}_{3}=\mathbf{v}_{3}-\mathbf{q}_{1}^{\mathrm{T}} \mathbf{v}_{3} \mathbf{q}_{1}-\mathbf{q}_{1}^{\mathrm{T}} \mathbf{v}_{3} \mathbf{q}_{1}=\mathbf{v}_{3}+\mathbf{u}_{1}-\mathbf{u}_{2}=(1,1,-2,0)^{\mathrm{T}}, \\
& \mathbf{q}_{3}=\mathbf{v}_{3} /\left\|\mathbf{v}_{3}\right\|=\frac{1}{\sqrt{6}}(1,1,-2,0)^{\mathrm{T}} .
\end{aligned}
$$

Hence, we have

$$
Q=\left(\begin{array}{ccc}
1 / 2 & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / 2 & -1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / 2 & 0 & -2 / \sqrt{6} \\
1 / 2 & 0 & 0
\end{array}\right)
$$

(b) Each step of the Gram Schmidt process from (a) is a multiplication of A on the right as follows.

$$
\left.\begin{array}{rl}
A & \leadsto A\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \leadsto A\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \leadsto A\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \\
0 & 0
\end{array} 1\right)\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / \sqrt{6}
\end{array}\right)=Q . \quad .
$$

The product of these invertible 3×3 matrices is exactly R^{-1}.
(c) Since the Gram-Schmidt of A and B gives the same outcome, the column space of A and B are the same. We know that A and $A A^{\mathrm{T}}$ have the same column space, and B and $B B^{\mathrm{T}}$ have the same column space. Hence $A A^{\mathrm{T}}$ and $B B^{\mathrm{T}}$ have the same column space. Moreover, since left nullspace is always orthogonal to the column space, $A A^{\mathrm{T}}$ and $B B^{\mathrm{T}}$ have the same left nullspace too. Also, notice that $A A^{\mathrm{T}}$ and $B B^{\mathrm{T}}$ are symmetric matrices, their row spaces are the same as the column spaces, and their nullspaces are the same as the left nullspaces. Therefore, all four subspaces of $A A^{\mathrm{T}}$ are the same as $B B^{\mathrm{T}}$.

Problem 5: The complete solution to $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{x}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+d\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

for any arbitrary constants c and d.
(i) If A is an $m \times n$ matrix with rank r, give as much true information as possible about the integers m, n, and r.
(ii) Construct an explicit example of a possible matrix A and a possible right-hand side \mathbf{b} with the solution \mathbf{x} above. (There are many acceptable answers; you only have to provide one.)

Solution (16 points $=8+8$)
(i) Since we can multiply A with $\mathbf{x}, n=3$. Also, since the nullspace of A is 2 -dimensional, $r=n-2=1$. There is no restriction on m except that $m \geq r=1$.
(ii) We construct a minimal one, namely, $A=\left(\begin{array}{lll}a_{1} & a_{2} & a_{2}\end{array}\right)$ is 1×3. For this, we need $A\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=0$ and $A\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)=0$. That is

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\binom{0}{0}
$$

A special solution is $A=(1-12)$. In this case, $\mathbf{b}=A \mathbf{x}=\left(\begin{array}{l}1-12\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)=(-1)$. So, an example is

$$
\left(\begin{array}{lll}
1 & -1 & 2
\end{array}\right) \mathbf{x}=(-1)
$$

Problem 6: Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

(i) A has one eigenvalue $\lambda=-1$, and the other eigenvalue is a double root of $\operatorname{det}(A-\lambda I)$. What is the other eigenvalue? (Very little calculation required.)
(ii) Is A defective? Why or why not?
(iii) Using the above A, suppose we want to solve the equation

$$
\frac{d \mathbf{u}}{d t}=A \mathbf{u}+c \mathbf{u}
$$

where c is some real number, for some initial condition $\mathbf{u}(0)$.
(a) For what values of c will the solutions $\mathbf{u}(t)$ always to go zero as $t \rightarrow \infty$?
(b) For what values of c will the solutions $\mathbf{u}(t)$ typically diverge $(\|\mathbf{u}(t)\| \rightarrow \infty)$ as $t \rightarrow \infty$?
(c) For what values of c will the solutions $\mathbf{u}(t)$ approach a constant vector (possibly zero) as $t \rightarrow \infty$?

Solution (18 points $=6+6+6(2+2+2))$
(i) Let $\lambda_{1}=-1$ and let $\lambda_{2}=\lambda_{3}$ denote the double roots. Then from the trace of A, we have $\lambda_{1}+2 \lambda_{2}=\operatorname{trace}(A)=3$. Hence, $\lambda_{2}=2$.
(ii) A is not defective. There are two ways to see it. For one way, since A is symmetric, it is always non-defective; for another way, we compute $A-\lambda_{2} I=$ $\left(\begin{array}{lll}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right)$, which has rank 1 and hence its nullspace is 2-dimentional.
(iii) The key point here is that $A+c I$ would have eigenvalues $\lambda_{1}+c$ and $\lambda_{2}+c$ (with multiplicity 2). An alternative point of view is as follows. If we write the initial condition $\mathbf{u}(t)=c_{1}(t) \mathbf{v}_{1}+c_{2}(t) \mathbf{v}_{2}+c_{3}(t) \mathbf{v}_{3}$, then the differential equation becomes
$\frac{d c_{1}(t)}{d t} \mathbf{v}_{1}+\frac{d c_{2}(t)}{d t} \mathbf{v}_{2}+\frac{d c_{3}(t)}{d t} \mathbf{v}_{3}=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+c_{3} \lambda_{3} \mathbf{v}_{3}+c c_{1} \mathbf{v}_{1}+c c_{2} \mathbf{v}_{2}+c c_{3} \mathbf{v}_{3}$.

We have

$$
\left\{\begin{aligned}
\frac{d c_{1}(t)}{d t}=c_{1} \lambda_{1}+c c_{1}, & \Rightarrow c_{1}=e^{\left(\lambda_{1}+c\right) t} \\
\frac{d c_{2}(t)}{d t}=c_{2} \lambda_{2}+c c_{2}, & \Rightarrow c_{2}=e^{\left(\lambda_{2}+c\right) t} ; \\
\frac{d c_{3}(t)}{d t}=c_{3} \lambda_{3}+c c_{3}, & \Rightarrow c_{3}=e^{\left(\lambda_{3}+c\right) t}
\end{aligned}\right.
$$

(a) If we require $\mathbf{u}(t)$ always go zero as $t \rightarrow \infty, \lambda_{1}+c<0, \lambda_{2}+c=\lambda_{3}+c<0$. Hence, we require $c<-2$.
(b) If the solution $\mathbf{u}(t)$ typically diverge, we need either $\lambda_{1}+c>0$ or $\lambda_{2}+c=$ $\lambda_{3}+c>0$. Hence, we require $c>-2$.
(c) If we allow the solution to approach to some constant vector, we allow to have the extreme case of (a), that is to say $c \leq-2$.

