Your PRINTED name is: $工$| Grading |
| :--- |
| 1 |
| 2 |
| 3 |

Please circle your recitation:

1)	M 2	2-131	A. Ritter	2-085	2-1192	afr
2)	M 2	4-149	A. Tievsky	2-492	3-4093	tievsky
3)	M 3	2-131	A. Ritter	2-085	2-1192	afr
4)	M 3	2-132	A. Tievsky	2-492	3-4093	tievsky
5)	T 11	2-132	J. Yin	2-333	3-7826	jbyin
6)	T 11	8-205	A. Pires	2-251	3-7566	arita
7)	T 12	2-132	J. Yin	2-333	3-7826	jbyin
8)	T 12	8-205	A. Pires	2-251	3-7566	arita
9)	T 12	26-142	P. Buchak	2-093	3-1198	pmb
10)	T 1	2-132	B. Lehmann	2-089	3-1195	lehmann
11)	T 1	26-142	P. Buchak	2-093	3-1198	pmb
12)	T 1	26-168	P. McNamara	2-314	4-1459	petermc
13)	T 2	2-132	B. Lehmann	2-089	2-1195	lehmann
14)	T 2	26-168	P. McNamara	2-314	4-1459	petermc

1 (40 pts.) The (real) matrix A is

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & x & 3 \\
2 & 3 & 6
\end{array}\right]
$$

(a) What can you tell me about the eigenvectors of A ?

What is the sum of its eigenvalues?
(b) For which values of x is this matrix A positive definite?
(c) For which values of x is A^{2} positive definite? Why?
(d) If R is any rectangular matrix, prove from $x^{\mathrm{T}}\left(R^{\mathrm{T}} R\right) x$ that $R^{\mathrm{T}} R$ is positive semidefinite (or definite). What condition on R is the test for $R^{\mathrm{T}} R$ to be positive definite?

This page intentionally blank.

2 (30 pts.) The cosine of a matrix is defined by copying the series for $\cos x$ (which always converges):

$$
\cos A=I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}-\cdots
$$

(a) Suppose $A x=\lambda x$. Show that x is an eigenvector of $\cos A$. Find the eigenvalue.
(b) Find the eigenvalues of $A=\frac{\pi}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. The eigenvectors are (1, 1) and $(1,-1)$. From the eigenvalues and eigenvectors of $\cos A$, find that matrix $\cos A$.
(c) The second derivative of the series for $\cos (A t)$ is $-A^{2} \cos (A t)$. So $u(t)=\boldsymbol{\operatorname { c o s }}(\boldsymbol{A t} \boldsymbol{)} \boldsymbol{u}(\mathbf{0})$ is a short formula for the solution of

$$
\frac{d^{2} u}{d t^{2}}=-A^{2} u \text { starting from } u(0) \text { with } u^{\prime}(0)=0
$$

Now construct that $u(t)=\cos (A t) u(0)$ by the usual three steps when A is diagonalizable: $A x_{1}=\lambda_{1} x_{1}, A x_{2}=\lambda_{2} x_{2}, A x_{3}=\lambda_{3} x_{3}$.

1. Expand $u(0)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$ in the eigenvectors.
2. Multiply those eigenvectors by \qquad , \qquad , .
3. Add up the solution $u(t)=c_{1}$ \qquad $x_{1}+c_{2}$ \qquad $x_{2}+c_{3}$ \qquad x_{3}.

This page intentionally blank.

3 (30 pts.) Suppose the vectors x, y give an orthonormal basis for \mathbf{R}^{2} and $A=x y^{T}$.
(a) Compute the rank of A and the rank of $A^{2}=\left(x y^{\mathrm{T}}\right)\left(x y^{\mathrm{T}}\right)$. Use this information to find the eigenvalues of A.
(b) Explain why this matrix B is similar to A (and write down what similar means):

$$
B=\left[\begin{array}{l}
x^{\mathrm{T}} \\
y^{\mathrm{T}}
\end{array}\right] A\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

(c) The eigenvalues of Q are $\lambda_{1}=e^{i \theta}=\cos \theta+i \sin \theta$ and $\lambda_{2}=e^{-i \theta}=\cos \theta-i \sin \theta:$

$$
\text { Rotation matrix } Q=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvectors of Q. Are they perpendicular?

This page intentionally blank.

