Your PRINTED name is: $工$| Grading |
| :--- |
| 1 |
| 2 |
| 3 |

Please circle your recitation:

1)	M 2	2-131	A. Ritter	2-085	2-1192	afr
2)	M 2	4-149	A. Tievsky	2-492	3-4093	tievsky
3)	M 3	2-131	A. Ritter	2-085	2-1192	afr
4)	M 3	2-132	A. Tievsky	2-492	3-4093	tievsky
5)	T 11	2-132	J. Yin	2-333	3-7826	jbyin
6)	T 11	8-205	A. Pires	2-251	3-7566	arita
7)	T 12	2-132	J. Yin	2-333	3-7826	jbyin
8)	T 12	8-205	A. Pires	2-251	3-7566	arita
9)	T 12	26-142	P. Buchak	2-093	3-1198	pmb
10)	T 1	2-132	B. Lehmann	2-089	3-1195	lehmann
11)	T 1	26-142	P. Buchak	2-093	3-1198	pmb
12)	T 1	26-168	P. McNamara	2-314	4-1459	petermc
13)	T 2	2-132	B. Lehmann	2-089	2-1195	lehmann
14)	T 2	26-168	P. McNamara	2-314	4-1459	petermc

1 (40 pts.) The (real) matrix A is

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & x & 3 \\
2 & 3 & 6
\end{array}\right]
$$

(a) What can you tell me about the eigenvectors of A ?

What is the sum of its eigenvalues?
(b) For which values of x is this matrix A positive definite?
(c) For which values of x is A^{2} positive definite? Why?
(d) If R is any rectangular matrix, prove from $x^{\mathrm{T}}\left(R^{\mathrm{T}} R\right) x$ that $R^{\mathrm{T}} R$ is positive semidefinite (or definite). What condition on R is the test for $R^{\mathrm{T}} R$ to be positive definite?

Solution $(10+10+10+10$ points)
a) Since A is a symmetric matrix (no matter what x is), its eigenvectors may be chosen orthonormal (5 points). The sum of the eigenvalues is the same as the trace of A, that is, the sum of the diagonal entries: $\operatorname{tr}(A)=7+x$.
b) In this case, the easiest tests for positive definiteness are the pivot test and the determinant test. I'll use the determinant test.

A matrix A is positive definite when every one of the top-left determinants is positive (3 points for correct defn.). In this case, the three determinants are $1, x-1$, and

$$
\begin{equation*}
\operatorname{det}(A)=1(6 x-9)-(6-6)+2(3-2 x)=2 x-3 \tag{1}
\end{equation*}
$$

(6 points). All of these are positive precisely when $x>3 / 2$ (1 point).
c) Perhaps the clearest way to think about this is by using the eigenvalues. Suppose A has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$. (They are all real because A is symmetric.) Then the eigenvalues of A^{2} are $\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}$ (5 points). These are all positive so long as the eigenvalues are non-zero. So, A^{2} is positive definite except when A has an eigenvalue of 0 , or equivalently, except when A is not invertible (3 points). We found in part that $\operatorname{det}(A)=0$ only when $x=3 / 2$. Thus, the final answer is that A^{2} is positive definite except when $x=3 / 2$ (2 points).

One could also find A^{2} explicitly and use the determinant or pivot test. In practice this turned out to lead to a lot of mistakes. However, you could notice that the top left entry of A^{2} is 6 , the 2 by 2 determinant is $6\left(10+x^{2}\right)-(7+x)^{2}=5 x^{2}-14 x+11>0$, and the 3 by 3 determinant is $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}$. The only way that any of these could be non-positive is if $\operatorname{det}(A)=0$.

A final approach is to follow the steps for part d) below.
d) We use the $x^{T} A x$ test for positive (semi)definiteness. We have

$$
\begin{equation*}
x^{T} R^{T} R x=(R x)^{T} R x=R x \cdot R x \tag{2}
\end{equation*}
$$

This is just the length of the vector $R x$. This length is positive when $R x$ is not the zero vector and is 0 when $R x$ is the 0 vector. In particular, since this number is always at least $0, R^{T} R$ is definitely positive semidefinite (6 points). It is positive definite when this number is positive for any nonzero x. That is, we need for $R x$ to only be the 0 vector when x is the 0 vector. This is equivalent to saying that R has trivial nullspace, or R has full column rank (4 points).

2 (30 pts.) The cosine of a matrix is defined by copying the series for $\cos x$ (which always converges):

$$
\cos A=I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}-\cdots
$$

(a) Suppose $A x=\lambda x$. Show that x is an eigenvector of $\cos A$. Find the eigenvalue.
(b) Find the eigenvalues of $A=\frac{\pi}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. The eigenvectors are $(1,1)$ and $(1,-1)$. From the eigenvalues and eigenvectors of $\cos A$, find that matrix $\cos A$.
(c) The second derivative of the series for $\cos (A t)$ is $-A^{2} \cos (A t)$. So $u(t)=\cos (\boldsymbol{A t}) \boldsymbol{u}(0)$ is a short formula for the solution of

$$
\frac{d^{2} u}{d t^{2}}=-A^{2} u \text { starting from } u(0) \text { with } u^{\prime}(0)=0
$$

Now construct that $u(t)=\cos (A t) u(0)$ by the usual three steps when A is diagonalizable: $A x_{1}=\lambda_{1} x_{1}, A x_{2}=\lambda_{2} x_{2}, A x_{3}=\lambda_{3} x_{3}$.

1. Expand $u(0)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$ in the eigenvectors.
2. Multiply those eigenvectors by \qquad , \qquad , \qquad .
3. Add up the solution $u(t)=c_{1}$ \qquad $x_{1}+c_{2}$ \qquad $x_{2}+c_{3}$ \qquad x_{3}.

Solution (10 $+10+10$ points)
a) Suppose that $A x=\lambda x$. Then

$$
\begin{align*}
\cos (A) x & =I x-\frac{1}{2!} A^{2} x+\frac{1}{4!} A^{4} x-\ldots \tag{3}\\
& =x-\frac{1}{2!} \lambda^{2} x+\frac{1}{4!} \lambda^{4} x-\ldots \tag{4}\\
& =\left(1-\frac{1}{2!} \lambda^{2}+\frac{1}{4!} \lambda^{4}-\ldots\right) x \tag{5}\\
& =\cos (\lambda) x \tag{6}
\end{align*}
$$

So x is an eigenvector of $\cos (A)$ with eigenvalue $\cos (\lambda)$.
b) We define

$$
A=\frac{\pi}{2}\left[\begin{array}{ll}
1 & 1 \tag{7}\\
1 & 1
\end{array}\right]
$$

We know that $(1,1)$ and $(1,-1)$ are eigenvectors of A. We can find the eigenvalues simply by acting by A :

$$
A\left[\begin{array}{l}
1 \tag{8}\\
1
\end{array}\right]=\frac{\pi}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\pi\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

So A has eigenvalue $\lambda_{1}=\pi$. Similarly,

$$
A\left[\begin{array}{c}
1 \tag{9}\\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So A has eigenvalue $\lambda_{2}=0$ (4 points). Just as for any other function $\left(A^{2}, e^{A}, A^{-1}, \ldots\right)$, this means that $\cos (A)$ has eigenvectors $(1,1)$ with eigenvalue $\cos (\pi)=-1$ and $(1,-1)$ with eigenvalue $\cos (0)=1$ (3 points). We can put these into the diagonalization formula to find $\cos (A)$:

$$
\cos (A)=\left[\begin{array}{cc}
1 & 1 \tag{10}\\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

(3 points)
c) This problem is modeled after what happens for $e^{A t}$. After expanding $u(0)$, step 2 involves multiplying the eigenvectors by $\cos \left(\lambda_{1} t\right), \cos \left(\lambda_{2} t\right)$, and $\cos \left(\lambda_{3} t\right)$. So the final answer is

$$
\begin{equation*}
u(t)=c_{1} \cos \left(\lambda_{1} t\right) x_{1}+c_{2} \cos \left(\lambda_{2} t\right) x_{2}+c_{3} \cos \left(\lambda_{3} t\right) x_{3} \tag{11}
\end{equation*}
$$

(10 points) Some common mistakes were forgetting to include the t, using the function e instead of cos, or putting in something entirely different for the coefficients.

3 (30 pts.) Suppose the vectors x, y give an orthonormal basis for \mathbf{R}^{2} and $A=x y^{\mathrm{T}}$.
(a) Compute the rank of A and the rank of $A^{2}=\left(x y^{\mathrm{T}}\right)\left(x y^{\mathrm{T}}\right)$. Use this information to find the eigenvalues of A.
(b) Explain why this matrix B is similar to A (and write down what similar means):

$$
B=\left[\begin{array}{l}
x^{\mathrm{T}} \\
y^{\mathrm{T}}
\end{array}\right] A\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

(c) The eigenvalues of Q are $\lambda_{1}=e^{i \theta}=\cos \theta+i \sin \theta$ and $\lambda_{2}=e^{-i \theta}=\cos \theta-i \sin \theta:$

$$
\text { Rotation matrix } Q=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Find the eigenvectors of Q. Are they perpendicular?
a) Any matrix given by $A=x y^{T}$ for two non-zero vectors x, y will have rank 1 . Every row will be a multiple of y^{T}, and every column will be a multiple of x, meaning that it must have rank 1. Alternatively, we note that x is in the nullspace of A, and that y is not, so that A must have rank exactly 1. (3 points)
Note that $A^{2}=\left(x y^{T}\right)\left(x y^{T}\right)=x\left(y^{T} x\right) y^{T}$ is the zero matrix, since $y^{T} x=0$ (they are perpendicular vectors). So A^{2} has rank 0. (3 points)
If the eigenvalues of A are λ_{1} and λ_{2}, then the eigenvalues of A^{2} are λ_{1}^{2} and λ_{2}^{2}. Since A^{2} only has the eigenvalue 0 , both λ_{1} and λ_{2} must be 0 . (4 points)
b) Two square matrices A and B are similar if there is some invertible matrix M such that $B=M A M^{-1}$ (5 points). Similarity is not the same thing as having equal eigenvalues; this only works if both A and B are diagonalizable matrices, and in fact our A is not diagonalizable. To be more precise, similarity implies that A and B have equal eigenvalues, but the converse is not true.

In this case we check that A and B are similar by showing that the other factors are inverses.

$$
\begin{align*}
{\left[\begin{array}{l}
x^{\mathrm{T}} \\
y^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right] } & =\left[\begin{array}{ll}
x^{T} x & x^{T} y \\
y^{T} x & y^{T} y
\end{array}\right] \tag{12}\\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{13}
\end{align*}
$$

The last step is true because x and y are perpendicular, and both of unit length (5 points).
c) Given the eigenvalues of Q, we find the eigenvectors using $N(Q-\lambda I)$. We start with $\lambda_{1}=\cos \theta+i \sin \theta:$

$$
Q-(\cos \theta+i \sin \theta) I=\left[\begin{array}{rr}
-i \sin \theta & -\sin \theta \tag{14}\\
\sin \theta & -i \sin \theta
\end{array}\right]
$$

and this matrix has nullspace generated by $(1,-i)$ or equivalently $(i, 1)$. Similarly, for $\lambda_{2}=$ $\cos \theta-i \sin \theta$ we find

$$
Q-(\cos \theta-i \sin \theta) I=\left[\begin{array}{rr}
i \sin \theta & -\sin \theta \tag{15}\\
\sin \theta & i \sin \theta
\end{array}\right]
$$

which has nullspace generated by $(1, i)$. (8 points)
Every orthogonal matrix has perpendicular eigenvectors. We check in this specific case:

$$
\begin{align*}
{\left[\begin{array}{l}
i \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
i
\end{array}\right] } & =\left[\begin{array}{l}
i \\
1
\end{array}\right]^{H}\left[\begin{array}{l}
1 \\
i
\end{array}\right] \tag{16}\\
& =\left[\begin{array}{ll}
-i & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right] \tag{17}\\
& =0 \tag{18}
\end{align*}
$$

(2 points) Make sure to take $x_{1}^{H} x_{2}$ and not $x_{1}^{T} x_{2}$.

