	Grading
Your PRINTED name is:	 1
	2
	3

Please circle your recitation:

1)	M 2	2-131	A. Ritter	2-085	2-1192	afr
2)	M 2	4-149	A. Tievsky	2-492	3-4093	tievsky
3)	M 3	2-131	A. Ritter	2-085	2-1192	afr
4)	M 3	2-132	A. Tievsky	2-492	3-4093	tievsky
5)	T 11	2-132	J. Yin	2-333	3-7826	jbyin
6)	T 11	8-205	A. Pires	2-251	3-7566	arita
7)	T 12	2-132	J. Yin	2-333	3-7826	jbyin
8)	T 12	8-205	A. Pires	2-251	3-7566	arita
9)	T 12	26-142	P. Buchak	2-093	3-1198	pmb
10)	T 1	2-132	B. Lehmann	2-089	3-1195	lehmann
11)	T 1	26-142	P. Buchak	2-093	3-1198	pmb
12)	T 1	26-168	P. McNamara	2-314	4-1459	petermc
13)	T 2	2-132	B. Lehmann	2-089	2-1195	lehmann
14)	T 2	26-168	P. McNamara	2-314	4-1459	petermc

- 1 (33 pts.) (a) If Ax = b and $A^{T}y = 0$ then b is perpendicular to y. (The column space of A is perpendicular to the nullspace of A^{T} .) Prove this by computing $(Ax)^{T}y$.
 - (b) Write down the 6 by 4 incidence matrix A of this graph (1 and -1 in each row of A). What is the dimension of the column space C(A)?

 Describe the nullpace N(A).
 - (c) Find one nonzero vector $y = (y_1, y_2, ..., y_6)$ that is in the nullspace of A^{T} . (Think loops.) If voltages x_1, x_2, x_3, x_4 are assigned to the nodes (keep the x's as variables not numbers), multiply by A to find Ax. Check that this Ax is perpendicular to your vector y. (That's Kirchhoff's Voltage Law.)

This page intentionally blank.

- 2 (33 pts.) (a) Suppose you want to fit the best straight line C+Dt to the values b=1,1,1,2 at the times t=0,1,3,4. What is the matrix A in the unsolvable system $A\begin{bmatrix} C\\D\end{bmatrix}=b$? Find the best \widehat{C},\widehat{D} and the heights p_1,p_2,p_3,p_4 of that line $\widehat{C}+\widehat{D}t$ at the times t=0,1,3,4.
 - (b) Think of the same problem as a projection onto the column space of A in \mathbb{R}^4 . What is the error vector e = b p? Show with numbers that e is perpendicular to (what space?).
 - (c) Use Gram-Schmidt to get orthonormal columns q_1, q_2 from the columns a_1, a_2 of your matrix A.

This page intentionally blank.

3 (34 pts.) This question is about the matrix

$$A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}.$$

- (a) Compute A^2 and use that to show that the determinant of A is either 1 or -1.
- (b) Determine whether $\det A = 1$ or -1.
- (c) Find the cofactor C_{11} corresponding to the entry $a_{11} = -\frac{1}{2}$.
- (d) Out of the 4! = 24 terms in the "big formula" for det A, show **four terms** that are $+\frac{1}{16}$. (For each term give the column numbers like 4, 3, 2, 1 or 2, 1, 4, 3 as you go down the matrix.)

This page intentionally blank.