Grading1
Your PRINTED name is: 2

Please circle your recitation:

1)	M 2	2-131	A. Ritter	2-085	2-1192	afr
2)	M 2	4-149	A. Tievsky	2-492	3-4093	evsky
3)	M 3	2-131	A. Ritter	2-085	2-1192	afr
4)	M 3	2-132	A. T	2-492	3-4093	evsky
5)	T 11	2-132	J. Yin	2-333	3-7826	jbyin
6)	T 11	8-205	A. Pires	2-251	3-7566	arita
7)	T 12	2-132	J. Yin	2-333	3-7826	jbyin
8)	T 12	8-205	A. Pires	2-251	3-7566	arita
9)	T 12	26-142	P. Buchak	2-093	3-1198	pmb
10)	T 1	2-132	B. Lehmann	2-089	3-1195	lehmann
11)	T 1	26-142	P. Buchak	2-093	3-1198	pmb
12)	T 1	26-168	P. McNamara	2-314	4-1459	petermc
13)	T 2	2-132	B. Lehmann	2-089	2-1195	lehmann
14)	T 2	26-168	P. McNamara	2-314	4-1459	peterm

1 ($\mathbf{1 8}$ pts.) Start with an invertible 3 by 3 matrix A. Construct B by subtracting 4 times row 1 of A from row 3. How do you find B^{-1} from A^{-1} ? You can answer in matrix notation, but you must also answer in words-what happens to the columns and rows?

Solution (18 points)

We can find B by multiplying A on the left by an appropriate matrix E_{31} (remember, row operations correspond to multiplication on the left, column operations correspond to multiplication on the right). Here, we need

$$
E_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right]
$$

Since $B=E_{31} A$, we know $B^{-1}=\left(E_{31} A\right)^{-1}=A^{-1} E_{31}^{-1}$. Thus, B^{-1} can be found by doing some column operations on A^{-1}.

What operations specifically? We know

$$
E_{31}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \tag{2}\\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]
$$

(this is the standard pattern for an E matrix). This represents adding 4 times column 3 to column 1.

2 (24 pts.) Elimination on A leads to U :

$$
A x=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 3 \\
1 & 3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { leads to } U x=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

(a) Factor the first matrix A into $A=L U$ and also into $A=L D L^{\mathrm{T}}$.
(b) Find the inverse of A by Gauss-Jordan elimination on $A A^{-1}=I$ or by inverting L and D and L^{T}.
(c) If D is diagonal, show that $L D L^{\mathrm{T}}$ is a symmetric matrix for every matrix L (square or rectangular).

Solution ($9+9+6$ points)

a) Since A is symmetric, we have an $L D L^{T}$ decomposition, and we find this first. Since

$$
U=\left[\begin{array}{lll}
1 & 1 & 1 \tag{3}\\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

we must have

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \tag{4}\\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

and so

$$
L^{T}=D^{-1} U=\left[\begin{array}{lll}
1 & 1 & 1 \tag{5}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Of course, this means that

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \tag{6}\\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

which we could have calculated directly.
b) If we did it using Gauss-Jordan elimination:

$$
\begin{aligned}
{\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 3 & 3 & 0 & 1 & 0 \\
1 & 3 & 7 & 0 & 0 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 2 & -1 & 1 & 0 \\
0 & 2 & 6 & -1 & 0 & 1
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 2 & -1 & 1 & 0 \\
0 & 0 & 4 & 0 & -1 & 1
\end{array}\right]
\end{aligned}
$$

(This is L^{-1} on the right hand side, so we can multiply and solve. We may also continue.)

$$
\begin{aligned}
{\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 2 & -1 & 1 & 0 \\
0 & 0 & 4 & 0 & -1 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 & -1 / 4 & 1 / 4
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 / 4 & -1 / 4 \\
0 & 1 & 0 & -1 / 2 & 3 / 4 & -1 / 4 \\
0 & 0 & 1 & 0 & -1 / 4 & 1 / 4
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 3 / 2 & -1 / 2 & 0 \\
0 & 1 & 0 & -1 / 2 & 3 / 4 & -1 / 4 \\
0 & 0 & 1 & 0 & -1 / 4 & 1 / 4
\end{array}\right]
\end{aligned}
$$

c) We show a matrix is symmetric by showing that it is equal to its transpose. If D is diagonal, then of course $D=D^{T}$. Thus:

$$
\begin{aligned}
\left(L D L^{T}\right)^{T} & =\left(L^{T}\right)^{T} D^{T} L^{T} \\
& =L D L^{T}
\end{aligned}
$$

3 (30 pts .) Suppose the nonzero vectors a_{1}, a_{2}, a_{3} point in different directions in R^{3} but

$$
3 a_{1}+2 a_{2}+a_{3}=\text { zero vector }
$$

The matrix A has those vectors a_{1}, a_{2}, a_{3} in its columns.
(a) Describe the nullspace of A (all x with $A x=0$).
(b) Which are the pivot columns of A ?
(c) I want to show that all 3 by 3 matrices with
$(*) \quad 3($ column 1$)+2($ column 2$)+($ column 3$)=$ zero vector form a subspace S of the space M of 3 by 3 matrices. Now the zero matrix is certainly included.

Suppose B and C are matrices whose columns have this property ($*$). To show that we have a subspace, we have to prove that every linear combination of B and $C \quad$ (finish sentence).
Go ahead and prove that.

Solution ($10+10+10$ points)

a) First, the problem gives us one vector in the nullspace: the equation

$$
\begin{equation*}
3 a_{1}+2 a_{2}+a_{3}=\text { zero vector } \tag{7}
\end{equation*}
$$

is the same as saying that $A x=0$, where

$$
x=\left[\begin{array}{l}
3 \tag{8}\\
2 \\
1
\end{array}\right]
$$

Thus, the nullspace $N(A)$ contains all scalar multiples of this vector $(3,2,1)$. Technically, we need to argue that there is nothing else in the nullspace. You must recognize that the matrix has rank 2 either here or in part b to get full credit.
b) Since we have a linear relationship between the columns, column 3 can not be a pivot column, so the rank is at most 2 . The problem also tell us that the three a_{i} vectors point in different directions. This means that they can't all be on the same line; that is, the column space must be at least a plane. Thus the the rank is exactly 2 .

Having rank 2 means that there are 2 pivot columns and one free column. Since column 3 is a linear combination of columns before it, it must be a free column. So columns 1 and 2 are pivots, and column 3 is free.
c) To show that we have a subspace, we have to prove that every linear combination of B and C \qquad .
Suppose that B and C have property $\left(^{*}\right)$. Consider the matrix $D=t_{1} B+t_{2} C$ for any two numbers t_{1}, t_{2}. For ease of notation, I'll denote the i th column of a matrix A by $\operatorname{col}_{i}(A)$. We have

$$
\begin{equation*}
\operatorname{col}_{i}(D)=t_{1} \operatorname{col}_{i}(B)+t_{2} \operatorname{col}_{i}(C) \tag{9}
\end{equation*}
$$

We can now check that D also satisfies (*):

$$
\begin{aligned}
3 \operatorname{col}_{1}(D)+2 \operatorname{col}_{2}(D)+\operatorname{col}_{3}(D)= & 3\left(t_{1} \operatorname{col}_{1}(B)+t_{2} \operatorname{col}_{1}(C)\right) \\
& +2\left(t_{1} \operatorname{col}_{2}(B)+t_{2} \operatorname{col}_{2}(C)\right) \\
& +\left(t_{1} \operatorname{col}_{3}(B)+t_{2} \operatorname{col}_{3}(C)\right) \\
= & t_{1}\left(3 \operatorname{col}_{1}(B)+2 \operatorname{col}_{2}(B)+\operatorname{col}_{3}(B)\right) \\
& +t_{2}\left(3 \operatorname{col}_{1}(C)+2 \operatorname{col}_{2}(C)+\operatorname{col}_{3}(C)\right) \\
= & 0
\end{aligned}
$$

4 (28 pts.) Start with this 2 by 4 matrix:

$$
A=\left[\begin{array}{llll}
2 & 3 & 1 & -1 \\
6 & 9 & 3 & -2
\end{array}\right]
$$

(a) Find all special solutions to $A x=0$ and describe the nullspace of A.
(b) Find the complete solution-meaning all solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$-to

$$
A x=\left[\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3}-x_{4} \\
6 x_{1}+9 x_{2}+3 x_{3}-2 x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(c) When an m by n matrix A has rank $r=m$, the system $A x=b$ can be solved for which b (best answer)? How many special solutions to $A x=0$?

Solution ($10+8+10$ points)

a) We find the special solutions by reducing A. I'll go all the way to row reduced echelon form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & 3 & 1 & -1 \\
6 & 9 & 3 & -2
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{cccc}
2 & 3 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{cccc}
1 & 3 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Now, in turn we set each free variable to 1 and the rest to 0 , and solve $U x=0$. The special solutions are

$$
\begin{align*}
& s_{1}=\left[\begin{array}{c}
-3 / 2 \\
1 \\
0 \\
0
\end{array}\right] \tag{10}\\
& s_{2}=\left[\begin{array}{c}
-1 / 2 \\
0 \\
1 \\
0
\end{array}\right] \tag{11}
\end{align*}
$$

The nullspace is all linear combinations of these two vectors; it will be a plane in \mathbb{R}^{4}.
b) One way to solve for a particular solution is just to look at the set-up: our b is the negative of the 4 th column, so $(0,0,0,-1)$ will work.

We could also solve for a particular solution using an augmented matrix:

$$
\left[\begin{array}{ccccc}
2 & 3 & 1 & -1 & 1 \\
6 & 9 & 3 & -2 & 2
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccc}
2 & 3 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

We can now back substitute and solve. We can pick the free variables to be whatever we like; we may as well set them to be 0 . Then the bottom equation gives us $x_{4}=-1$, and the top then gives $x_{1}=0$. This is the same vector as above.
The complete solution is particular solution plus the nullspace:

$$
x_{c}=\left[\begin{array}{c}
0 \tag{12}\\
0 \\
0 \\
-1
\end{array}\right]+c_{1}\left[\begin{array}{c}
-3 / 2 \\
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 / 2 \\
0 \\
1 \\
0
\end{array}\right]
$$

c) When an m by n matrix has rank m, the dimension of the column space (= rank) is the same as the dimension of the ambient space. Thus, every vector is in the column space; the equation $A x=b$ can be solved for every b. The number of special solutions will be the number of rows minus the rank (note that $n \geq m$ since the rank is no greater than n). Thus, we find that there are $n-m$ special solutions.

