18.06 Problem Set 9
 Due Friday, 9 May 2008 at 4 pm in 2-106.

Problem 1: Do problem 4 in section 6.7 (pg. 360) in the book.
Solution (10 points)
a) We have

$$
A^{T} A=A A^{T}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

This matrix has eigenvalues satisfying $\lambda^{2}-3 \lambda+1=0$, so it has eigenvalues $\lambda_{1}=$ $\frac{3}{2}+\frac{\sqrt{5}}{2}$ and $\lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}$. Its eigenvectors form the nullspace of

$$
A^{T} A-\frac{3+\sqrt{5}}{2} I=\left[\begin{array}{cc}
(1-\sqrt{5}) / 2 & 1 \\
1 & -(1+\sqrt{5}) / 2
\end{array}\right]
$$

This has nullspace generated by $(2, \sqrt{5}-1)$. Since the eigenvectors of $A^{T} A$ must be perpendicular, we know that another eigenvector is $(\sqrt{5}-1,-2)$ (which we could also find directly). The normalized eigenvector matrix is

$$
S=\frac{1}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{cc}
2 & \sqrt{5}-1 \\
\sqrt{5}-1 & -2
\end{array}\right]
$$

b) We construct the singular value decomposition $A=U \Sigma V^{H}$. First, we choose the matrix V to be the eigenvector matrix for $A^{T} A$; that is, it is just the S we found in part a. The matrix Σ is the 2 x 2 matrix with the square roots of the eigenvalues of $A^{T} A$ on the diagonal:

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{\frac{3+\sqrt{5}}{2}} & 0 \\
0 & \sqrt{\frac{3-\sqrt{5}}{2}}
\end{array}\right]
$$

Finally, we find U via the equation $A V=U \Sigma$. We can't skip directly to $U=S$. It is true that U will be an eigenvector matrix for $A A^{T}$, but we must pick the eigenvectors correctly! In this case the only choice in unit eigenvectors of $A A^{T}$ is the sign. Even so, we must have the relationship $A=U \Sigma V^{H}$, and if we get the sign of the vectors of U backwards this will not be true.

Let v_{i} and u_{i} be the ith columns of V and U. We know u_{1} is either v_{1} or $-v_{1}$, and similarly for u_{2}. The question is just which way around it is. We start with v_{1} :

$$
\begin{aligned}
A v_{1} & =\sqrt{\frac{3+\sqrt{5}}{2}} u_{1} \\
\frac{1}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{c}
\sqrt{5}+1 \\
2
\end{array}\right] & =\sqrt{\frac{3+\sqrt{5}}{2}} u_{1}
\end{aligned}
$$

so

$$
u_{1}=\sqrt{\frac{1}{(10+2 \sqrt{5})}}\left[\begin{array}{c}
\sqrt{5}+1 \\
2
\end{array}\right]=\sqrt{\frac{1}{(10-2 \sqrt{5})}}\left[\begin{array}{c}
2 \\
\sqrt{5}-1
\end{array}\right]
$$

This is the same vector as v_{1}. Here $A v_{1}=\sigma_{1} u_{1}$ is an eigenvector equation for A, since σ_{1} is an eigenvalue of A. So v_{1} keeps the same sign.

For v_{2} we find:

$$
\begin{aligned}
A v_{2} & =\sqrt{\frac{3-\sqrt{5}}{2}} u_{2} \\
\frac{1}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{r}
\sqrt{5}-3 \\
\sqrt{5}-1
\end{array}\right] & =\sqrt{\frac{3-\sqrt{5}}{2}} u_{2}
\end{aligned}
$$

We already know that u_{2} is either v_{2} or $-v_{2}$. However v_{2} has negative second component, and u_{2} has negative first component, meaning that the sign has switched. Here $A v_{2}=\sigma_{2} u_{2}$ is not an eigenvector equation, since $\sigma_{2}=-\lambda_{2}$. So we need to switch the sign of u_{2} as well.

In the end, we get the SVD:

$$
\begin{aligned}
U & =\frac{1}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{cc}
2 & -(\sqrt{5}-1) \\
\sqrt{5}-1 & 2
\end{array}\right] \\
\Sigma & =\left[\begin{array}{cc}
\sqrt{\frac{3+\sqrt{5}}{2}} & 0 \\
0 & \sqrt{\frac{3-\sqrt{5}}{2}}
\end{array}\right] \\
V & =\frac{1}{\sqrt{10-2 \sqrt{5}}}\left[\begin{array}{cc}
2 & \sqrt{5}-1 \\
\sqrt{5}-1 & -2
\end{array}\right]
\end{aligned}
$$

It is almost the diagonalization of A, but not quite. Since one of the eigenvalues of A is negative, it can't appear in Σ. We must switch its sign, and we compensate by switching the sign of the eigenvector in U. As you might guess from this problem,
the SVD for a positive definite matrix is its diagonalization - see the last problem of this pset.

Problem 2: Do problem 7 in section 6.7 (pg. 360).

Solution
Here
(10 points)

Here

$$
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Here the eigenvalue equation is $(1-\lambda)\left(\lambda^{2}-3 \lambda+1\right)-(1-\lambda)=0$. Factoring out the $(1-\lambda)$, we get $(1-\lambda) \lambda(\lambda-3)=0$, so the eigenvalues are $3,1,0$. Remember, when we do the SVD we always put 0 eigenvalues last! This is important.

The first eigenvector is the nullspace of

$$
A^{T} A-3 I=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

By inspection we see that this has basis $(1,2,1)$. Similarly, the second eigenvector is the nullspace of

$$
A^{T} A-I=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

By inspection this has basis $(1,0,-1)$. Finally, the last eigenvector is the nullspace of $A^{T} A$, and by inspection we see this is $(1,-1,1)$. Putting this all together, we get a normalized eigenvector matrix

$$
S=\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]
$$

Now we repeat this for

$$
A A^{T}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

This has eigenvalues given by $\lambda^{2}-4 \lambda+3=0$, so the eigenvalues are 3 and 1 . An eigenvector for 3 is $(1,1) / \sqrt{2}$, and for 1 is $(1,-1) / \sqrt{2}$.

Finally, we find the SVD. As before, we set $V=S$ that we found above. We find the 2 x3 matrix Σ by taking the square roots of the eigenvalues (either for $A^{T} A$ or $A A^{T}$, both will work):

$$
\Sigma=\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Finally, we find U using the equations $A v_{i}=\sigma_{i} u_{i}$. As before, we know that U is an eigenvector matrix for $A A^{T}$, but we must choose the correct one. Here the unit eigenvectors are determined up to sign.

Calculating:

$$
\begin{aligned}
A v_{1} & =\left[\begin{array}{c}
\frac{3}{\sqrt{6}} \\
\frac{3}{\sqrt{6}}
\end{array}\right] \\
& =\sqrt{3} u_{1}
\end{aligned}
$$

So we set $u_{1}=(1,1) / \sqrt{2}$. Similarly

$$
\begin{aligned}
A v_{2} & =\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \\
& =u_{2}
\end{aligned}
$$

So we get the SVD:

$$
\begin{aligned}
U & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
\Sigma & =\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
V & =\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]
\end{aligned}
$$

Finally we check by multiplying it all out:

$$
\begin{aligned}
U \Sigma V^{H} & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{2} & 2 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 / \sqrt{2} & 2 / \sqrt{2} & 0 \\
0 & 2 / \sqrt{2} & 2 / \sqrt{2}
\end{array}\right] \\
& =A
\end{aligned}
$$

Note that the last row of V^{H} didn't affect anything. This is typical when we get eigenvalues of 0 ; they shouldn't factor in to the multiplication at all.

Problem 3: Do problem 9 in section 6.7 (pg. 361).
Solution (5 points)
First note that A must have dimensions 3 by 4. If A has rank one, so does $A^{T} A$. This means that only one eigenvalue of $A^{T} A$ is not 0 , so Σ has the form

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Because we only have one non-zero entry in Σ, we also only get one non-trivial equation $A v_{1}=\sigma_{1} u_{1}$. Of course this must be the equation given in the problem $A v=12 u$. So, the first column of U is u, and the first column of V is v.

When we multiply out $A=U \Sigma V^{T}$, most of it will cancel because of the 0 entries in Σ. In fact, the only non-zero part will come from the first columns of U and V (see part a of the next problem). So $A=12 u v^{T}$. You don't need to multiply it out, but if you do you get

$$
A=\left[\begin{array}{llll}
4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 \\
2 & 2 & 2 & 2
\end{array}\right]
$$

The only singular value is given by the equation, namely, $\sigma_{1}=12$.
We could also have done this problem by noting that any rank 1 matrix has the form $x y^{T}$ for some vectors x and y, and using the equation to calculate x and y explicitly.

Problem 4: a) Do problem 11 in section 6.7 (pg. 361).
b) Do problem 16 in section 6.7 (pg. 361).

Solution ($5+5$ points)
a) In brief, the SVD expresses A as a sum of r rank one matrices because of the block form of multiplication (see page 60). The block form of multiplication is a general fact, so the only thing to write down is why Σ has the effect that it does.

So, note that if there are more columns than rows, then multiplication by Σ rescales the rows of the matrix V and cuts off the bottom ones. Similarly, if there are more rows than columns, multiplication by Σ rescales the columns of U and cuts
off the last ones. Either way, using the block picture of matrix multiplication, we find $U \Sigma V^{T}$ as a sum of rank one matrices

$$
U \Sigma V^{T}=u_{1} \sigma_{1} v_{1}^{T}+\ldots+u_{r} \sigma_{r} v_{r}^{T}
$$

b) One might hope that if A were a square matrix, the SVD for $A+I$ would involve $\Sigma+I$ in analogy to the diagonalization equation. However, if we were to use $\Sigma+I$ in the SVD, we would get $U(\Sigma+I) V^{H}=A+U V^{H} \neq A+I$. The problem is that Σ is the square root of the eigenvalues of $A^{T} A$. Substituting $A+I$ in gives $\left(A^{T}+I\right)(A+I)=A^{T} A+A^{T}+A+I$, and the eigenvalues don't work out right in general.

Problem 5: Do problem 6 in section 7.1 (pg. 368).
Solution (10 points)
a) This T does not satisfy either criterion. For example, if $v=(1,0,0)$ and $w=(0,1,0)$, then $T(v+w)=(1,1,0) / \sqrt{2} \neq(1,0,0)+(0,1,0)$ and $T(2 v)=$ $(1,0,0) \neq 2(1,0,0)$.
b) This satisfies both; it is a linear transformation. In fact, it is the linear transformation from \mathbb{R}^{3} to \mathbb{R} given by multiplying by the matrix $[1,1,1]$.
c) This again satisfies both; it is the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} given by the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

d) This satisfies neither criterion. For example, if $v=(-1,0,0)$ and $w=(2,0,0)$, then $T(v+w)=1 \neq 0+2$ and $T(-v)=1 \neq-1(0)$.

Problem 6: Do problem 12 in section 7.1 (pg. 369).
Solution (10 points)
The quickest way to do each of these is to write the given vector as a linear combination of the basis $(1,1)$ and $(2,0)$. To find the coefficients in the new basis, we multiply by the change-of-base matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]
$$

a) Because

$$
\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

we see that $(2,2)=2(1,1)+0(2,0)$. (Of course we could have seen this more easily directly.) So $T((2,2))=2 T(1,1)+0 T(2,0)=2(2,2)=(4,4)$.
b) Because

$$
\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

we see that $(3,1)=(1,1)+(2,0)$. So $T((3,1))=T(1,1)+T(2,0)=(2,2)+(0,0)=$ $(2,2)$.
c) Because

$$
\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

we see that $(-1,1)=(1,1)-(2,0)$. So $T((-1,1))=T(1,1)-T(2,0)=(2,2)$.
d) Because

$$
\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
b \\
a / 2-b / 2
\end{array}\right]
$$

we see that $(a, b)=b(1,1)+\frac{a-b}{2}(2,0)$. So $T((a, b))=b T(1,1)+\frac{a-b}{2} T(2,0)=b(2,2)$.

Problem 7: Do problems 5 and 7 in section 7.2 (pg. 380-381).
Solution ($5+5$ points)
Problem 5: T is a linear transformation from the three-dimensional space V to the three-dimensional space W. Once we choose a basis for V and W we can associate a (unique) matrix to T. Remember, we form the the ith column of A by putting in $T\left(v_{i}\right)$ in terms of w_{i}. For example, because $T\left(v_{1}\right)=w_{2}$, the first column must be $[0,1,0]^{T}$. Thus T must have the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Problem 7: Since $T\left(v_{2}\right)=T\left(v_{3}\right)$ (and there are no other linear relations), the nullspace of T has basis $v_{2}-v_{3}$. That is, $T\left(c\left(v_{2}-v_{3}\right)\right)=c\left(T\left(v_{2}\right)-T\left(v_{3}\right)\right)=0$. This corresponds to the column vector $[0,1,-1]^{T}$, which one can check for A easily.

The complete solution to $T(v)=w_{2}$ is the particular solution plus the nullspace. Since a particular solution is v_{1}, the complete solution is all vectors of the form $v_{1}+c\left(v_{2}-v_{3}\right)$, or in vectors $[1,0,0]^{T}+c[0,1,-1]^{T}$.

Problem 8: Do problem 16 in section 7.2 (pg. 381).
Solution (10 points)
a) This is just the matrix

$$
\left[\begin{array}{cc}
r & s \\
t & u
\end{array}\right]
$$

Remember that the first column of a matrix is where $(1,0)$ goes, and the second column is where $(0,1)$ goes.
b) This is the change-of-base matrix that is the inverse of the change we just did:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

You can check by hand!
c) Of course we can't do this when $a d-b c=0$, that is, we can't do this if the vectors are dependent. If they are in the same direction, we must also get vectors in the same direction after doing T.

Problem 9: Do problem 28 in section 7.2 (pg. 382).

Solution (5 points)

Repeating the statement: suppose we have an invertible linear transformation. Then pick any basis v_{1}, \ldots, v_{n} of V, and pick the basis $w_{i}=T\left(v_{i}\right)$ of W. Then of course with these bases T corresponds to the identity matrix.

The question is why we need T to be invertible for this to work. If T is not invertible, then in fact the $T\left(v_{i}\right)$ can't form a basis because they will be linearly dependent. This is because if T is not invertible, then there is a vector $a_{1} v_{1}+\ldots+$ $a_{n} v_{n}$ in the nullspace (and not all of the a_{i} are 0). That is,

$$
T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=0
$$

This gives a linear dependence relation between the $T\left(v_{i}\right)$.

If T is invertible, then the $T\left(v_{i}\right)$ must be linearly independent, for precisely the same reason; if there were a linear relation, then T would have to have a non-trivial nullspace.

Problem 10: Do problem 13 in section 7.4 (pg. 398).
Solution (10 points)
Here A is a 1 by 3 matrix, so U will be 1 by 1 and V will be 3 by 3 . We start by finding V and Σ. Note that $A^{T} A$ will have eigenvector $[3,4,0]^{T}$ with eigenvalue 25 , and then two perpendicular eigenvectors each with eigenvalue 0 . We can find these eigenvectors by taking the nullspace of A : it has special solutions $[-4 / 3,1,0]^{T}$ and $[0,0,1]^{T}$. Remember that we must renormalize these vectors when forming V. So we have

$$
V=\left[\begin{array}{ccc}
3 / 5 & -4 / 5 & 0 \\
4 / 5 & 3 / 5 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The singular value $\sigma_{1}=5$ is the square root of the eigenvalue. Finally, since U is a unit 1 by 1 vector, it must be either [1] or $[-1]$, and using $A v_{1}=\sigma_{1} u_{1}$ shows that it is [1]. Writing it all down, we get

$$
A=[1]\left[\begin{array}{lll}
5 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
3 / 5 & -4 / 5 & 0 \\
4 / 5 & 3 / 5 & 0 \\
0 & 0 & 1
\end{array}\right]^{H}
$$

The pseudoinverse $A^{+}=V \Sigma^{+} U^{H}$. Writing it down, we get

$$
A^{+}=\left[\begin{array}{ccc}
3 / 5 & -4 / 5 & 0 \\
4 / 5 & 3 / 5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 / 5 \\
0 \\
0
\end{array}\right][1]^{H}
$$

The product $A A^{+}$is projection onto the column space of A. However, the column space of A is just $[c]$. So we should expect to get the identity 1 by 1 matrix:

$$
A A^{+}=U \Sigma V^{H} V \Sigma^{+} U^{H}=U \Sigma \Sigma^{+} U^{H}=U U^{H}=[1]
$$

The other way round, $A^{+} A$ is projection onto the row space of A. Calculating, we get

$$
\begin{aligned}
A^{+} A=V \Sigma^{+} U^{H} U \Sigma V^{H} & =V\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] V^{H} \\
& =v_{1} v_{1}^{T}
\end{aligned}
$$

and since v_{1} is a unit vector, this is just projection onto the space generated by v_{1}, namely, the row space of A.

Problem 11: Do problem 16 in section 7.4 (pg. 399).
Solution (10 points)
The SVD will equal the diagonalization $Q \Lambda Q^{T}$ when A is symmetric positive semi-definite. (The answer "positive definite" is acceptable, since that is what the phrasing would lead you to believe.)

Let's prove it by diagonalizing $A^{T} A$ to find V and Σ. Suppose that A is symmetric positive semidefinite - then it has non-negative real eigenvalues and orthonormal eigenvectors. Write the diagonalization $A=Q \Lambda Q^{T}$. We have $A^{T} A=A^{2}$, so the diagonalization is $A^{T} A=Q \Lambda^{2} Q^{T}$. Thus $V=Q$. Also, because all of the eigenvalues are non-negative, taking the square roots of the entries of Λ^{2} returns Λ. So $\Sigma=\Lambda$. Finally, $U=A V \Sigma^{-1}=Q$ as well.

Note: if A weren't positive semidefinite, then the square roots of the diagonal of Λ^{2} wouldn't give us Λ because some of the signs would be switched. U would then be Q but with some of the signs of the vectors switched to compensate.

