
18.06 Problem Set 8
Due Wednesday, 23 April 2008 at 4 pm in 2-106.

Problem 1: Do problem 3 in section 6.5 (pg. 339) in the book.

Solution (10 points)
The matrix A encodes the quadratic f = x2 +4xy+9y2. Completing the square

is the same as finding the row reduced form of A: we find

U =

[
1 2
0 5

]
=

[
1 0
0 5

] [
1 2
0 1

]
so f = (x+ 2y)2 + 5y2.

Similarly, B gives the quadratic f = x2 +6xy+9y2. This time the reduced form
is

U =

[
1 3
0 0

]
=

[
1 0
0 0

] [
1 3
0 1

]
so f = (x+ 3y)2.

Problem 2: Do problem 6 in section 6.5 (pg. 339).

Solution (10 points)
If A has full column rank, we know that ATA is square symmetric and invertible.

We must show that it is also positive definite. The easiest criterion is to show that
for every non-zero vector x the number xT (ATA)x > 0. To do this we just note that
xTATAx = Ax · Ax = ‖Ax‖2 > 0.

Problem 3: For what numbers c and d are the matrices A and B positive definite?
Test the 3 determinants:

A =

c 2 3
2 c 4
3 4 1


B =

1 2 1
2 d 3
1 3 1


Solution (15 points)
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The three top-left determinants of A are c, c2 − 4, and c(c − 16) − 2(−10) +
3(8− 3c) = c2 − 25c+ 44. If A is positive definite, all three of these numbers must
be positive. First of all c > 0. The second determinant yields

c2 − 4 = (c− 2)(c+ 2) > 0

so either c > 2 or c < −2. Because c > 0 we can ignore the second case. Finally,
the third determinant c2− 25c+ 44 has roots 25/2± 1

2

√
449 and we either need c to

be smaller than the smaller root or larger than the larger root. The smaller root is
less than 2, so we can ignore that piece of it. In the end we find

c >
25 +

√
449

2

The top three determinants of B are 1, d−4, and (d−9)−2(−1)+1(6−d) = −1.
This last determinant is negative no matter what d is, so this matrix will never be
positive definite.

Problem 4: Do problem 15 in section 6.5 (pg. 340).

Solution (10 points)
We must show that if A and B are positive definite, so is A + B. We use the

xT (A + B)x criterion: we have xT (A + B)x = xTAx + xTBx. If x is nonzero than
both terms are positive (since A and B are positive definite), so the whole thing is
positive. Thus A+B is also positive definite.

Problem 5: Do problem 28 in section 6.5 (pg. 342).

Solution (10 points)
The key is that this is a QΛQT decomposition of A.
a) The determinant of A is the product of the eigenvalues, so detA = 10.
b) The eigenvalues of A are 2 and 5.
c) the eigenvectors of A are [cos θ, sin θ]T and [− sin θ, cos θ]T .
d) A is symmetric since it has a QΛQT decomposition. It is then positive definite

because the eigenvalues are positive.

Problem 6: a) Let f1(x, y) = 1
4
x4 + x2y + y2. Find the second derivative matrix

A1 =

[
∂2f/∂x2 ∂2f/∂x∂y
∂2f/∂y∂x ∂2f/∂y2

]
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A1 is not positive definite everywhere - find the conditions on x and y for it to
be positive definite. (Interesting question: check what happens when both partial
derivatives vanish, that is, when ∂f/∂x = ∂f/∂y = 0. Is f still positive definite? It
turns out that f1 does attain a minimal value, but not along isolated points. Find
the points where it hits a global minimum. This part is not required.)

b) Let f2(x, y) = x3 + xy − x. Find the second derivative matrix A2. When is
this matrix positive definite? (Interesting question: check what happens when both
partial derivatives vanish, so when ∂f/∂x = ∂f/∂y = 0. Show that you get a saddle
point. This part is not required.)

Solution (15 points)
a) The second derivative matrix is

A1 =

[
3x2 + 2y 2x

2x 2

]
For this matrix to be positive definite, we need both top-left determinants to be
positive. Thus 3x2 + 2y > 0 and 6x2 + 4y − 4x2 = 2(x2 + 2y) > 0. In this case the
second condition implies the first, so we need x2 + 2y > 0.

Answer to interesting question: we can rewrite f1 = 1
4
(x2 +2y)2. So, f1 is always

non-negative, and is 0 only along the curve x2 + 2y = 0. So these are all “minimal
points” in a sense. However, the function can’t be strictly concave upwards around
these points (because it looks flat along x2 + 2y = 0), so it can’t be positive definite
here. This curve is also the locus where both partial derivatives vanish.

b) The second derivative matrix is

A2 =

[
6x 1
1 0

]
The top-left determinants are 6x and −1. So this matrix is never positive definite.

Answer to interesting question: Suppose both partial derivatives vanish. That
is, we look at the points where 3x2 + y − 1 = 0 and x = 0. Combining these gives
only the point (0, 1). At this point the eigenvalues are 1 and −1, so that we get a
saddle point.

Problem 7: Do problem 3 in section 8.1 (pg. 410).

Solution (15 points)
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We are asked to find when the equation ATCAu = f is solvable, i.e. what is the
column space of ATCA? Here, the matrix from equation (9) is

ATCA =

 c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3


Since the middle column is the sum of the outer two with the sign switched, we see
that the column space has basis [1,−1, 0]T and [0,−1, 1]T . Recall that the equations
giving the column space are determined by the perpendicular vectors. In this case
the perpendicular vectors is [1, 1, 1]T , so that C(ATCA) is the set of all vectors
whose components add to 0. Physically speaking, this means that we are looking
at the case when the entire apparatus has no net force on it - if our equations are
satisfied then the only forces are coming from the springs.

When the forces are (−1, 0, 1), one solution is u = ( 1
c2
, 0, −1

c3
). That is, the

middle mass is fixed, and the two end masses are vibrating opposite each other.
The complete solution is a particular solution plus the nullspace. Since ATCA is
symmetric, the nullspace is perpendicular to the column space, i.e. the nullspace
has basis [1, 1, 1]. So the complete solution is u = (m + 1

c2
,m,m + −1

c3
). Physically

speaking, this means that every solution is given by the particular one we found
after shifting the whole apparatus upwards or downwards.

Problem 8: Do problem 11 in section 8.1 (pg. 411). This problem requires Matlab.

Solution (15 points) (Thanks to Peter Buchak.)
This problem asks for you to find numerical solutions of the differential equation

−d
2u

dx2
+ 10

du

dx
= 1

with boundary conditions u(0) = 0 and u(1) = 0.
We’re told ∆x = 1/8, which means we’re going to find the solution u(x) at

points spaced 1/8 apart, that is, u(1/8), u(2/8), ..., u(7/8). These unknowns will
be stored in a vector u = (u(1/8), u(2/8), ...u(7/8)). (We leave off the two end
measurements to represent that the boundary conditions are 0.) Since this vector
has 7 components, the matrices in this problem will be 7 by 7.

du/dx can be approximated by multiplying by either the forward difference ma-
trix or the backward difference matrix; this problem asks you to try both. −d2u/dx2

can be approximated by multiplying by the second difference matrix. The Matlab
code copied below shows one way to construct these matrices. (I called them F, B,
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and S.) You could also type them in by hand. When you run the code, it will display
the matrices so you can see what they look like. They should resemble the matrix
in equation (13) of section 8.1 of the textbook, for example.

The right hand side of the equation is just the function f(x) = 1, which at the
7 points is just a vector of 7 ones.

To solve the equation, combine the matrices for the second derivative and the
first derivative to get a single matrix K that performs the operation −d2/dx2 +
10d/dx. Then solve the linear system Ku = f with the Matlab command u = K\f.
The Matlab code does this twice, with a K matrix that uses the forward difference
(K1) and a K matrix that uses the backward difference (K2), to get two approximate
solutions, u1 and u2. Both of these are plotted, along with the exact solution. (For
this simple equation, the formula for the exact solution could be obtained by the
standard techniques of 18.03 for example.)

If you want, you can modify the N=7 line of the code to solve for more than 7
unknowns (like 50 or 100 for example), to see how the approximate solutions get
more accurate with more unknowns.

Brian’s Remark: for the numbers to work out correctly, you need the second
derivative matrix to have the same number everywhere along the diagonal. If you
used A′A for the 7 by 7 matrix A, then the bottom right hand will be incorrect.
However, if you use the 9 by 9 matrix A, calculate A′A, and then cut off the first and
last columns and rows, you do get the correct matrix. Sorry about the confusion -
I’ve instructed the graders to give full credit for this.

function problem8 % problem set 8 section 8.1 problem 11

N=7; % 7 unknowns

dx=1/(N+1); % dx=1/8

% construct forward, backward, and second difference matrices

F=(diag(ones(1,N-1),1)-diag(ones(1,N)))/dx

B=(diag(ones(1,N))-diag(ones(1,N-1),-1))/dx

S=(2*diag(ones(1,N))-diag(ones(1,N-1),1)-diag(ones(1,N-1),-1))/(dx^2)

f=ones(N,1); % right hand side

% solve K*u=f using both forward and backward differences

K1=S+10*F

u1=K1\f;

K2=S+10*B

u2=K2\f;
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% plot these solutions, along with exact solution for comparison

x=(1:N)/(N+1);

plot(x,u1,’+k’); % forward difference solution: +’s

hold on

plot(x,u2,’xk’); % backward difference solution: x’s

x3=0:.01:1;

u3=1/(10*(exp(10)-1))*(1+(exp(10)-1)*x3-exp(10*x3));

plot(x3,u3,’k’);

hold off

grid on
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Figure 1: Approximate solutions using forward (+) and backward (x) differences,
along with exact solution (solid line).
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