18.06 Problem Set 7 Due Wednesday, 16 April 2008 at 4 pm in 2-106.

Problem 1: Do problem 1 in section 6.3 (pg. 315) in the book.

Solution (10 points)

We solve a linear system of differential equations by taking

$$u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2$$

where λ_1, λ_2 are the eigenvalues, x_1, x_2 are the eigenvectors, and c_1, c_2 are constants that satisfy $c_1x_1 + c_2x_2 = u(0)$.

To write down the matrix exponential explicitly, we must find the eigenvalues and eigenvectors of A. Since this A is diagonal, its eigenvalues are just the diagonal entries, i.e. $\lambda_1 = 4$ and $\lambda_2 = 1$. The eigenvectors are $x_1 = (1,0)$ and $x_2 = (1,-1)$. Finally, if u(0) = (5,-2) we must find how to write u(0) as a linear combination of x_1 and x_2 . We do this by solving the equation

$$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

We get $c_2 = 2$ and $c_1 = 3$. So, the final equation is

$$u(t) = 3e^{4t} \begin{bmatrix} 1\\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Problem 2: Do problem 3 in section 6.3 (pg. 315).

Solution (10 points)

To linearize this system, we identify u with the vector $[y, y']^T$, so that we have two equations dy/dt = y' and dy'/dt = y'' = 4y + 5y'. That is, we can "decouple" the differential equation by adding y' as a new variable, to obtain the system

$$\begin{bmatrix} dy/dt \\ dy'/dt \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix}$$

We call the coefficient matrix A as usual. The eigenvalues of A satisfy the equation $\lambda^2 - 5\lambda - 4 = 0$, so the eigenvalues are $\lambda_1 = \frac{1}{2}(5 + \sqrt{41})$ and $\lambda_2 = \frac{1}{2}(5 - \sqrt{41})$.

Another way to find the eigenvalues is to substitute $y = e^{\lambda t}$ into the differential equation. We obtain

$$\lambda^2 e^{\lambda t} = 5\lambda e^{\lambda t} + 4e^{\lambda t}$$

Dividing by $e^{\lambda t}$, we find the same relationship $\lambda^2 - 5\lambda - 4 = 0$.

Problem 3: a) Do problem 17 in section 6.3 (pg. 317).

b) Do problem 24 in section 6.3 (pg. 318).

Solution (5+5 points)

a) The infinite series for e^{Bt} is

$$e^{Bt} = I + tB + \frac{1}{2}t^2B^2 + \dots$$

However, since $B^2 = 0$, all the terms of this sequence will be zero except for the first two. Thus

$$e^{Bt} = I + tB = \begin{bmatrix} 1 & -t \\ 0 & 1 \end{bmatrix}$$

The derivative is

$$d(e^{Bt})/dt = \begin{bmatrix} 0 & -1\\ 0 & 0 \end{bmatrix}$$

Of course, this is the same thing as Be^{Bt} (just multiply it out).

b) First, recall that $e^{A+B} = e^A e^B$ whenever AB = BA. The matrices A and -A always commute (both products are $-A^2$), so $e^{At}e^{-At} = e^0 = I$. Thus e^{At} is always invertible. You could also check this by multiplying out the power series formally.

Second, we know that e^{At} has diagonalization $Se^{\Lambda t}S^{-1}$. That is, the eigenvalues of e^{At} are just $e^{\lambda t}$ for eigenvalues λ of A. However, $e^{\lambda t}$ is never 0, so e^{At} never has 0 for an eigenvalue, meaning that it is always invertible.

Problem 4: a) Do problem 4 in section 6.4 (pg. 327).

b) Do problem 10 in section 6.4 (pg. 327).

Solution (5+5 points)

a) We need to diagonalize A; since A is symmetric, we know that we will be able to pick perpendicular eigenvectors. If we normalize these eigenvectors to length 1, the eigenvector matrix will be orthogonal. A has eigenvalues given by the equation $\lambda^2 - 5\lambda - 50 = 0$, so A has eigenvalues $\lambda_1 = 10$ and $\lambda_2 = -5$. The corresponding eigenvectors of unit length are $x_1 = \frac{1}{\sqrt{5}} [1, 2]^T$ and $x_2 = \frac{1}{\sqrt{5}} [-2, 1]^T$. So

$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2\\ 2 & 1 \end{bmatrix}$$

b) The flaw here is that $x^T x$ is not necessarily a real number (and neither is $x^T A x$). We know that $x^H x$ is always real, since it is the length of x squared. But in general $x^T x$ is not real - take for example the one-component vector x = [1 + i].

Problem 5: Do problem 15 in section 6.4 (pg. 328).

Solution (10 points) We diagonalize

$$A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$$

The eigenvalues are given by the equation $\lambda^2 = 0$, so the only eigenvalue is $\lambda = 0$. The eigenvectors are then given by the nullspace of A. We find this using row reduction, just as for real matrices:

$$\begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix} \rightsquigarrow \begin{bmatrix} i & 1 \\ 0 & 0 \end{bmatrix}$$

The nullspace is one dimensional, meaning that every eigenvector is a multiple of $[1, -i]^T$.

Problem 6: Do problem 24 in section 6.4 (pg. 329).

Solution (10 points) (No justifications necessary.)

We start with A. It is definitely invertible. It is orthogonal since $P^T = P^{-1}$ (both are equal to P). It is not a projection matrix because $P^2 \neq P$. It is clearly a permutation matrix. It is diagonalizable because it is symmetric (so that we can find a basis of orthonormal eigenvectors). It is Markov because all entries are non-negative and the columns add to 1.

A does not have an LU-decomposition, because we must do a row swap in reducing A. It does have a QR-decomposition because the columns are linearly independent. It is diagonalizable, so it has an $S\Lambda S^{-1}$ decomposition. Because it is also symmetric, the diagonalization actually gives a $Q\Lambda Q^T$ decomposition. *B* is not invertible (it has rank 1). It is not orthogonal as it has no inverse. It is a projection matrix, because $B^2 = B$ and $B^T = B$ - in fact it projects onto the vector (1, 1, 1). It is not a permutation matrix. It is diagonalizable because it is symmetric. It is Markov.

B does have an *LU*-decomposition, since we do not need a row swap. It doesn't have a QR-decomposition because the columns are dependent. It is diagonalizable and symmetric, so it has both a $S\Lambda S^{-1}$ and a $Q\Lambda Q^T$ factorization.

Problem 7: Do problems 3 and 4 from section 10.2 (pg. 492).

Solution (10 points)

We solve the equation Az = 0 by reducing:

$$\begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix} \rightsquigarrow \begin{bmatrix} i & 1 & i \\ 0 & 2i & i - 1 \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & -i & 1 \\ 0 & 1 & (i - 1)/2i \end{bmatrix}$$
$$\rightsquigarrow \begin{bmatrix} 1 & 0 & (i + 1)/2 \\ 0 & 1 & (i + 1)/2 \end{bmatrix}$$

This matrix has one free column, so we get one special solution

$$(-(i+1)/2, -(i+1)/2, 1)$$

I'll rescale to use z = (i + 1, i + 1, -2) instead, it doesn't make any difference. The matrix A^H is

$$A^{H} = \overline{A}^{T} = \begin{bmatrix} -i & 1\\ 1 & -i\\ -i & -i \end{bmatrix}$$

Column 1 is $[-i, 1, -i]^T$. To calculate $C_1 \cdot z$, we need to take

$$C_1 \cdot z = C_1^H z = [i, 1, i] \begin{bmatrix} i+1\\i+1\\-2 \end{bmatrix} = 0$$

Similarly,

$$C_2 \cdot z = C_2^H z = [1, i, i] \begin{bmatrix} i+1\\i+1\\-2 \end{bmatrix} = 0$$

Of course these equations must be true; by taking the Hermitian of a column of A^H , we are just getting a row of A, and we know that any row of A times a vector in the nullspace gives 0.

The matrix A^T is

$$A^T = \begin{bmatrix} i & 1\\ 1 & i\\ i & i \end{bmatrix}$$

These columns are not perpendicular to z, for example

$$C_1 \cdot z = C_1^H z = [-i, 1, -i] \begin{bmatrix} i+1\\ i+1\\ -2 \end{bmatrix} = 2 + 2i$$

Putting all this together, we see that the four fundamental spaces should be C(A), N(A), $C(A^H)$ and $N(A^H)$. They will satisfy the same orthogonal relationships as before: N(A) and $C(A^H)$ are orthogonal complements, and C(A) and $N(A^H)$ are orthogonal complements.

Problem 8: Do problem 15 from section 10.2 (pg. 493).

Solution (10 points)

Since A is Hermitian, we expect it to have real eigenvalues, and a unitary eigenvector matrix U.

A has eigenvalues given by the equation $\lambda^2 - \lambda - 2 = 0$, so we find eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$. The corresponding normalized eigenvectors are $x_1 = \frac{1}{\sqrt{6}}[1-i,2]^T$ and $x_2 = \frac{1}{\sqrt{3}}[i-1,1]^T$. (Another choice in the same direction is $\frac{1}{\sqrt{6}}[-2,1+i]^T$, which is more symmetric-looking.) So we obtain

$$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

and

$$U = \frac{1}{\sqrt{6}} \begin{bmatrix} 1-i & -2 \\ 2 & 1+i \end{bmatrix}$$

Since the columns of U are (complex) orthogonal unit vectors, U is unitary.

Problem 9: Do problem 6 in section 10.3 (pg. 500).

Solution (10 points)

The Fourier matrix F_4 is

$$F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

We can multiply this out to find

$$F_4^2 = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \end{bmatrix}$$

and

$$F_4^4 = \begin{bmatrix} 16 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 16 \end{bmatrix}$$

Problem 10: Do problem 11 in section 10.3 (pg. 501).

Solution (10 points)

Multiplying the two given matrices, we find that the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = i$, $\lambda_3 = i^2 = -1$, and $\lambda_1 = i^3 = -i$.