18.06 Problem Set 3

Due Wednesday, 27 February 2008 at 4 pm in 2-106.

Problem 1: Do problem 7 from section 2.7 (pg. 105) in the book.

Problem 2: Do problem 10 from section 3.1 (pg. 119). (Give explanations of just a sentence or two.)

Problem 3: Consider the system of equations

$$
\left[\begin{array}{ccc}
1 & 4 & 2 \\
2 & 8 & 5 \\
-1 & -4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

a) For which right sides (find a condition on b_{1}, b_{2}, b_{3}) is this system solvable?
b) Call the coefficient matrix A. Is the vector $(2,5,-2)$ in the column space of A ? How about $(1,2,3)$?
c) Suppose we add a fourth column $(2,5,-2)$ to A. How does the column space change? What if we added the column $(1,2,3)$ instead?

Problem 4: Do problem 9 from section 3.2 (pg. 131).

Problem 5: Do problem 20 from section 3.2 (pg. 132).

Problem 6: Do problem 21 from section 3.2 (pg. 132). (Make sure the matrix you construct has exactly the nullspace asked for in the problem, and no larger.)

Problem 7: a) Do problem 1 from section 3.3 (pg. 141).
b) Do problem 3 in section 3.3 (pg. 141).

Problem 8: Do problem 17 in section 3.3 (pg. 143).

Problem 9: Define the matrix

$$
A=\left[\begin{array}{lllll}
1 & 2 & 2 & 4 & 6 \\
1 & 2 & 3 & 6 & 9 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

a) Reduce A to ordinary echelon form. What are the pivots? What are the free variables?
b) Find a special solution for each free variable. (Set the free variable to 1 . Set the other variables to 0 .)
c) By combining the special solutions, describe every solution to $A x=0$.
d) What is the rank of A ? Which columns will generate the column space $C(A)$?

Problem 10: Do problem 4 in section 3.4 (pg. 152).

Problem 11: Do problem 21 in section 3.4 (pg. 154).

