18.06 Problem Set 2

Due Wednesday, 20 February 2008 at 4 pm in 2-106.

Problem 1: a) Do problem 5 from section 2.4 (pg. 65) in the book.
b) Do problem 26 in section 2.4 (pg. 69).

Problem 2: Do problem 24 from section 2.4 (pg. 68).

Problem 3: Do problem 7 from section 2.5 (pg. 79).

Problem 4: Define the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
-1 & -1 & 5 \\
2 & 7 & -3
\end{array}\right)
$$

Using elimination one can calculate that the inverse is

$$
A^{-1}=\left(\begin{array}{ccc}
-16 & -11 & 3 \\
\frac{7}{2} & \frac{5}{2} & -\frac{1}{2} \\
-\frac{5}{2} & -\frac{3}{2} & \frac{1}{2}
\end{array}\right)
$$

a) Suppose that we formed B by switching the top two rows of A. What would B^{-1} be?
b) Now suppose we defined C by adding three times column(3) of A to column(2). What is C^{-1} ?

Problem 5: Do problem 23 from section 2.5 (pg. 80).

Problem 6: Do problem 29 from section 2.5 (pg. 81). As with any True/False question, be sure to explain your reasoning: give a brief proof if the statement is true, and give a counterexample if the statement is false.

Problem 7: Do problem 12 from section 2.6 (pg. 92).

Problem 8: Do problem 13 in section 2.6 (pg. 93).

Problem 9: Do problem 28 in section 2.6 (pg. 95).

Problem 10: In this problem we will use Matlab to do LU factorizations. Don't forget to include your code! Define the matrix

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

The command $[\mathbf{L}, \mathbf{U}]=\mathbf{l} \mathbf{u}(\mathbf{A})$ will decompose A into L and U. We can further decompose U by using the fact that A is symmetric, so that $U=D L^{\prime}$ (the 'denotes transpose in Matlab). What are L, D, U ? What will the pattern be for larger matrices of the same form?

Now, factor $\mathbf{B}=[1,2 ; 2,5]$ into $B=C^{\prime} C$ by using $\mathbf{C}=\operatorname{chol}(\mathbf{B})$ (here chol stands for Cholesky). Try using the command $[\mathbf{L}, \mathbf{U}]=\mathbf{l} \mathbf{u}(\mathbf{B})$. What happens and why? We'll need to include a permutation matrix P via the command $[\mathbf{L}, \mathbf{U}, \mathbf{P}]=\mathbf{l} \mathbf{u}(\mathbf{B})$. Find L, U, P and check that $P B=L U$.

