18.06	.8.06 Professor Strang		F	Final Exam		May 20, 2008	
		NTED name is le your recitat					Grading 1 2 3 4 5 6
 2) M 3) M 4) M 5) T 6) T 7) T 8) T 9) T 10) T 11) T 12) T 13) T 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 A. Tievsky A. Ritter A. Tievsky J. Yin A. Pires J. Yin A. Pires J. Yin A. Pires B. Lehmann P. Buchak P. Buchak P. Buchak B. Lehmann B. Lehmana 	2-085 2-492 2-085 2-492 2-333 2-251 2-333 2-251 2-093 2-093 2-089 2-093 2-314		afr tievsky afr tievsky jbyin arita jbyin arita pmb lehmann pmb petermc lehmann		7 8 9 10

Thank you for taking 18.06.

If you liked it, you might enjoy 18.085 this fall. Have a great summer. GS 1 (10 pts.) The matrix A and the vector b are

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

- (a) The complete solution to Ax = b is x =_____.
- (b) $A^{\mathrm{T}}y = c$ can be solved for which column vectors $c = (c_1, c_2, c_3, c_4)$? (Asking for conditions on the *c*'s, not just *c* in $C(A^{\mathrm{T}})$.)
- (c) How do those vectors c relate to the special solutions you found in part (a)?

- 2 (8 pts.) (a) Suppose q₁ = (1, 1, 1, 1)/2 is the first column of Q. How could you find three more columns q₂, q₃, q₄ of Q to make an orthonormal basis? (Not necessary to compute them.)
 - (b) Suppose that column vector q₁ is an eigenvector of A: Aq₁ = 3q₁.
 (The other columns of Q might not be eigenvectors of A.) Define T = Q⁻¹AQ so that AQ = QT. Compare the first columns of AQ and QT to discover what numbers are in the first column of T?

3 (12 pts.) Two eigenvalues of this matrix A are $\lambda_1 = 1$ and $\lambda_2 = 2$. The first two pivots are $d_1 = d_2 = 1$.

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

- (a) Find the other eigenvalue λ_3 and the other pivot d_3 .
- (b) What is the smallest entry a_{33} in the southeast corner that would make A positive semidefinite? What is the smallest c so that A + cIis positive semidefinite?
- (c) Starting with one of these vectors $u_0 = (3, 0, 0)$ or (0, 3, 0) or (0, 0, 3), and solving $u_{k+1} = \frac{1}{2}Au_k$, describe the limit behavior of u_k as $k \to \infty$ (with numbers).

- 4 (10 pts.) Suppose Ax = b has a solution (maybe many solutions). I want to prove two facts:
 - A. There is a solution x_{row} in the row space $C(A^{\text{T}})$.
 - B. There is only *one* solution in the row space.
 - (a) Suppose Ax = b. I can split that x into $x_{row} + x_{null}$ with x_{null} in the nullspace. How do I know that $Ax_{row} = b$? (Easy question)
 - (b) Suppose x_{row}^* is in the row space and $Ax_{row}^* = b$. I want to prove that x_{row}^* is the same as x_{row} . Their difference $d = x_{row}^* x_{row}$ is in which subspaces? How to prove d = 0?
 - (c) Compute the solution x_{row} in the row space of this matrix A, by solving for c and d:

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \end{bmatrix} x_{\text{row}} = \begin{bmatrix} 14 \\ 9 \end{bmatrix} \text{ with } x_{\text{row}} = c \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + d \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

5 (10 pts.) The numbers D_n satisfy $D_{n+1} = 2D_n - 2D_{n-1}$. This produces a first-order system for $u_n = (D_{n+1}, D_n)$ with this 2 by 2 matrix A:

$$\begin{bmatrix} D_{n+1} \\ D_n \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} D_n \\ D_{n-1} \end{bmatrix} \text{ or } u_n = Au_{n-1}.$$

- (a) Find the eigenvalues λ_1, λ_2 of A. Find the eigenvectors x_1, x_2 with second entry equal to 1 so that $x_1 = (z_1, 1)$ and $x_2 = (z_2, 1)$.
- (b) What is the inner product of those eigenvectors? (2 points)
- (c) If $u_0 = c_1 x_1 + c_2 x_2$, give a formula for u_n . For the specific $u_0 = (2, 2)$ find c_1 and c_2 and a formula for D_n .

- 6 (12 pts.) (a) Suppose q_1, q_2, a_3 are linearly independent, and q_1 and q_2 are already orthonormal. Give a formula for a third orthonormal vector q_3 as a linear combination of q_1, q_2, a_3 .
 - (b) Find the vector q_3 in part (a) when

$$q_{1} = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \qquad q_{2} = \frac{1}{2} \begin{bmatrix} 1\\-1\\1\\-1\\-1 \end{bmatrix} \qquad a_{3} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$

(c) Find the projection matrix P onto the subspace spanned by the first two vectors q_1 and q_2 . You can give a formula for P using q_1 and q_2 or give a numerical answer.

7 (12 pts.) (a) Find the determinant of this N matrix.

$$N = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 2 & 1 & 0 & 3 \\ 3 & 0 & 1 & 2 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

- (b) Using the cofactor formula for N^{-1} , tell me one entry that is zero or tell me that all entries of N^{-1} are nonzero.
- (c) What is the rank of N I? Find all four eigenvalues of N.

8 (8 pts.) Every invertible matrix A is the product A = QH of an orthogonal matrix Q and a symmetric positive definite matrix H. I will start the proof:

A has a singular value decomposition $A=U\Sigma V^{\rm T}.$ Then $A=(UV^{\rm T})(V\Sigma V^{\rm T}).$

- (a) Show that UV^{T} is an orthogonal matrix Q (what is the test for an orthogonal matrix?).
- (b) Show that $V\Sigma V^{T}$ is a symmetric positive definite matrix. What are its eigenvalues and eigenvectors? Why did I need to assume that A is invertible?

9 (7 pts.) (a) Find the inverse L^{-1} of this real triangular matrix L:

$$L = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ a & 1 & 0 \\ 0 & a & 1 \end{array} \right]$$

You can use formulas or Gauss-Jordan elimination or any other method.

- (b) Suppose D is the real diagonal matrix $D = \text{diag}(d, d^2, d^3)$. What are the conditions on a and d so that the matrix $A = LDL^{T}$ is (three separate questions, one point each)
 - (i) invertible? (ii) symmetric? (iii) positive definite?

10 (11 pts.) This problem uses least squares to find the *plane* C + Dx + Ey = b that best fits these 4 points:

x = 0	y = 0	b=2
x = 1	y = 1	b = 1
x = 1	y = -1	b = 0
x = -2	y = 0	b = 1

- (a) Write down 4 equations Ax = b with unknown x = (C, D, E) that would hold if the plane went through the 4 points. Then write down the equations to solve for the best (least squares) solution $\hat{x} = (\hat{C}, \hat{D}, \hat{E})$.
- (b) Find the best \hat{x} and the error vector e (is the vector e in \mathbb{R}^3 or \mathbb{R}^4 ?).
- (c) If you change this b = (2, 1, 0, 1) to the vector $p = A\hat{x}$, what will be the best plane to fit these four new points (p_1, p_2, p_3, p_4) ? What will be the new error vector?