

Thank you for taking 18.06.
If you liked it, you might enjoy 18.085 this fall.
Have a great summer. GS

1 (10 pts.) The matrix A and the vector b are

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

(a) The complete solution to $A x=b$ is $x=$ \qquad .
(b) $A^{\mathrm{T}} y=c$ can be solved for which column vectors $c=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$? (Asking for conditions on the c^{\prime} 's, not just c in $\boldsymbol{C}\left(A^{\mathrm{T}}\right)$.)
(c) How do those vectors c relate to the special solutions you found in part (a)?

2 (8 pts.) (a) Suppose $q_{1}=(1,1,1,1) / 2$ is the first column of Q. How could you find three more columns q_{2}, q_{3}, q_{4} of Q to make an orthonormal basis? (Not necessary to compute them.)
(b) Suppose that column vector q_{1} is an eigenvector of $A: A q_{1}=3 q_{1}$. (The other columns of Q might not be eigenvectors of A.) Define $T=Q^{-1} A Q$ so that $A Q=Q T$. Compare the first columns of $A Q$ and $Q T$ to discover what numbers are in the first column of T ?

3 (12 pts.) Two eigenvalues of this matrix A are $\lambda_{1}=1$ and $\lambda_{2}=2$. The first two pivots are $d_{1}=d_{2}=1$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the other eigenvalue λ_{3} and the other pivot d_{3}.
(b) What is the smallest entry a_{33} in the southeast corner that would make A positive semidefinite? What is the smallest c so that $A+c I$ is positive semidefinite?
(c) Starting with one of these vectors $u_{0}=(3,0,0)$ or $(0,3,0)$ or $(0,0,3)$, and solving $u_{k+1}=\frac{1}{2} A u_{k}$, describe the limit behavior of u_{k} as $k \rightarrow \infty$ (with numbers).

4 (10 pts.) Suppose $A x=b$ has a solution (maybe many solutions). I want to prove two facts:
A. There is a solution $x_{\text {row }}$ in the row space $\boldsymbol{C}\left(A^{\mathrm{T}}\right)$.
B. There is only one solution in the row space.
(a) Suppose $A x=b$. I can split that x into $x_{\text {row }}+x_{\text {null }}$ with $x_{\text {null }}$ in the nullspace. How do I know that $A x_{\text {row }}=b$? (Easy question)
(b) Suppose $x_{\text {row }}^{*}$ is in the row space and $A x_{\text {row }}^{*}=b$. I want to prove that $x_{\text {row }}^{*}$ is the same as $x_{\text {row }}$. Their difference $d=x_{\text {row }}^{*}-x_{\text {row }}$ is in which subspaces? How to prove $d=0$?
(c) Compute the solution $x_{\text {row }}$ in the row space of this matrix A, by solving for c and d :

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 1 & -1
\end{array}\right] x_{\mathrm{row}}=\left[\begin{array}{c}
14 \\
9
\end{array}\right] \quad \text { with } \quad x_{\mathrm{row}}=c\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+d\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
$$

5 (10 pts.) The numbers D_{n} satisfy $D_{n+1}=2 D_{n}-2 D_{n-1}$. This produces a first-order system for $u_{n}=\left(D_{n+1}, D_{n}\right)$ with this 2 by 2 matrix A :

$$
\left[\begin{array}{c}
D_{n+1} \\
D_{n}
\end{array}\right]=\left[\begin{array}{rr}
2 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
D_{n} \\
D_{n-1}
\end{array}\right] \quad \text { or } \quad u_{n}=A u_{n-1}
$$

(a) Find the eigenvalues λ_{1}, λ_{2} of A. Find the eigenvectors x_{1}, x_{2} with second entry equal to 1 so that $x_{1}=\left(z_{1}, 1\right)$ and $x_{2}=\left(z_{2}, 1\right)$.
(b) What is the inner product of those eigenvectors? (2 points)
(c) If $u_{0}=c_{1} x_{1}+c_{2} x_{2}$, give a formula for u_{n}. For the specific $u_{0}=(2,2)$ find c_{1} and c_{2} and a formula for D_{n}.

6 (12 pts.) (a) Suppose q_{1}, q_{2}, a_{3} are linearly independent, and q_{1} and q_{2} are already orthonormal. Give a formula for a third orthonormal vector q_{3} as a linear combination of q_{1}, q_{2}, a_{3}.
(b) Find the vector q_{3} in part (a) when

$$
q_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad q_{2}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \quad a_{3}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(c) Find the projection matrix P onto the subspace spanned by the first two vectors q_{1} and q_{2}. You can give a formula for P using q_{1} and q_{2} or give a numerical answer.

7 (12 pts.) (a) Find the determinant of this N matrix.

$$
N=\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & 2 \\
4 & 0 & 0 & 1
\end{array}\right]
$$

(b) Using the cofactor formula for N^{-1}, tell me one entry that is zero or tell me that all entries of N^{-1} are nonzero.
(c) What is the rank of $N-I$? Find all four eigenvalues of N.

8 (8 pts.) Every invertible matrix A is the product $A=Q H$ of an orthogonal matrix Q and a symmetric positive definite matrix H. I will start the proof:
A has a singular value decomposition $A=U \Sigma V^{\mathrm{T}}$. Then $A=\left(U V^{\mathrm{T}}\right)\left(V \Sigma V^{\mathrm{T}}\right)$.
(a) Show that $U V^{\mathrm{T}}$ is an orthogonal matrix Q (what is the test for an orthogonal matrix?).
(b) Show that $V \Sigma V^{\mathrm{T}}$ is a symmetric positive definite matrix. What are its eigenvalues and eigenvectors? Why did I need to assume that A is invertible?

9 (7 pts.) (a) Find the inverse L^{-1} of this real triangular matrix L :

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & a & 1
\end{array}\right]
$$

You can use formulas or Gauss-Jordan elimination or any other method.
(b) Suppose D is the real diagonal matrix $D=\operatorname{diag}\left(d, d^{2}, d^{3}\right)$. What are the conditions on a and d so that the matrix $A=L D L^{\mathrm{T}}$ is (three separate questions, one point each)
(i) invertible?
(ii) symmetric?
(iii) positive definite?

10 (11 pts.) This problem uses least squares to find the plane $C+D x+E y=b$ that best fits these 4 points:

$$
\begin{array}{lll}
x=0 & y=0 & b=2 \\
x=1 & y=1 & b=1 \\
x=1 & y=-1 & b=0 \\
x=-2 & y=0 & b=1
\end{array}
$$

(a) Write down 4 equations $A x=b$ with unknown $x=(C, D, E)$ that would hold if the plane went through the 4 points. Then write down the equations to solve for the best (least squares) solution $\widehat{x}=(\widehat{C}, \widehat{D}, \widehat{E})$.
(b) Find the best \widehat{x} and the error vector e (is the vector e in \mathbf{R}^{3} or \mathbf{R}^{4} ?).
(c) If you change this $b=(2,1,0,1)$ to the vector $p=A \widehat{x}$, what will be the best plane to fit these four new points $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$? What will be the new error vector?

