
18.06 Professor Strang Final Exam May 20, 2008
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Your PRINTED name is:

Please circle your recitation:

1) M 2 2-131 A. Ritter 2-085 2-1192 afr

2) M 2 4-149 A. Tievsky 2-492 3-4093 tievsky

3) M 3 2-131 A. Ritter 2-085 2-1192 afr

4) M 3 2-132 A. Tievsky 2-492 3-4093 tievsky

5) T 11 2-132 J. Yin 2-333 3-7826 jbyin

6) T 11 8-205 A. Pires 2-251 3-7566 arita

7) T 12 2-132 J. Yin 2-333 3-7826 jbyin

8) T 12 8-205 A. Pires 2-251 3-7566 arita

9) T 12 26-142 P. Buchak 2-093 3-1198 pmb

10) T 1 2-132 B. Lehmann 2-089 3-1195 lehmann

11) T 1 26-142 P. Buchak 2-093 3-1198 pmb

12) T 1 26-168 P. McNamara 2-314 4-1459 petermc

13) T 2 2-132 B. Lehmann 2-089 2-1195 lehmann

14) T 2 26-168 P. McNamara 2-314 4-1459 petermc

Thank you for taking 18.06.

If you liked it, you might enjoy 18.085 this fall.

Have a great summer. GS



1 (10 pts.) The matrix A and the vector b are

A =


1 1 0 2

0 0 1 4

0 0 0 0

 b =


3

1

0


(a) The complete solution to Ax = b is x = .

(b) ATy = c can be solved for which column vectors c = (c1, c2, c3, c4) ?

(Asking for conditions on the c’s, not just c in C(AT).)

(c) How do those vectors c relate to the special solutions you found in

part (a) ?

Solution (10 points)

a) The complete solution is a particular solution xp plus any vector in the nullspace xn. Since

the matrix A is already reduced, we can just read the special solutions off: [−1, 1, 0, 0]T and

[−2, 0,−4, 1]T . To find a particular solution to Ax = b, we put any numbers (we may as

well choose 0) in for the free variables. This yields the two equations x1 = 3 and x3 = 1, so

xp = [3, 0, 1, 0]T . In the end we get

xcomp =


3

0

1

0

 + c1


−1

1

0

0

 + c2


−2

0

−4

1

 (1)

b) You can do this computation by hand by augmenting AT with the column (c1, c2, c3, c4)

and row reducing. The solution is given by the equations that correspond to 0 rows in the

reduced matrix. A quicker way is to note that ATy = c has a solution whenever c is in the

column space C(AT ), i.e. the row space of A. This is perpendicular to the nullspace. Thus,

we can find the equations by taking a basis for the nullspace and using the components as

coefficients in our equations. We find equations −c1 + c2 = 0 and −2c1 − 4c3 + c4 = 0.

c) Because these c are in the row space, they are perpendicular to vectors in the nullspace

of A, and in particular are perpendicular to the special solutions.

2



2 (8 pts.) (a) Suppose q1 = (1, 1, 1, 1)/2 is the first column of Q. How could you

find three more columns q2, q3, q4 of Q to make an orthonormal basis ?

(Not necessary to compute them.)

(b) Suppose that column vector q1 is an eigenvector of A: Aq1 = 3q1.

(The other columns of Q might not be eigenvectors of A.) Define

T = Q−1AQ so that AQ = QT . Compare the first columns of AQ and

QT to discover what numbers are in the first column of T ?

Solution (8 points)

a) First, we find additional vectors v2, v3 and v4 that (along with q1) make up a basis of R4.

Then we run Gram-Schmidt on q1, v2, v3, v4.

b) Using the column picture of multiplication, we see that the first column of AQ will be

Aq1 = 3q1. Similarly, if we denote the first column of T by (t1, t2, t3, t4), then the first column

of QT will be t1q1 + t2q2 + t3q3 + t4q4. Since these two are equal, we get an equality of vectors

3q1 = t1q1 + t2q2 + t3q3 + t4q4 (2)

Since the qi are linearly independent, we must have t1 = 3 and the other ti = 0, showing

that the first column of T is (3, 0, 0, 0).

We can also note that the first column of T is equal to 3QT q1, which yields the same answer.
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3 (12 pts.) Two eigenvalues of this matrix A are λ1 = 1 and λ2 = 2. The first two

pivots are d1 = d2 = 1.

A =


1 0 1

0 1 1

1 1 0

 .
(a) Find the other eigenvalue λ3 and the other pivot d3.

(b) What is the smallest entry a33 in the southeast corner that would

make A positive semidefinite ? What is the smallest c so that A + cI

is positive semidefinite ?

(c) Starting with one of these vectors u0 = (3, 0, 0) or (0, 3, 0) or (0, 0, 3),

and solving uk+1 = 1
2
Auk, describe the limit behavior of uk as k →∞

(with numbers).

Solution (12 points)

a) The sum of the eigenvalues is the trace, so 1 + 2 +λ3 = 2. Thus λ3 = −1. The product of

the pivots is the determinant, which is the product of the eigenvalues as well. So d3 = −2.

Note that this means that A is not positive-definite.

b) We can test positive-definiteness using the determinant method. The two top-left de-

terminants of A are both positive, so we just need to check the third one. We obtain the

relation:

1(c− 1) + 1(−1) ≥ 0 (3)

so the smallest value of c is 2.

For the second part, we test whether the eigenvalues are non-negative. The eigenvalues of

A + cI are just the eigenvalues of A plus c. So when c = 1 all the eigenvalues will be

non-negative.
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c) The matrix 1
2
A is a Markov matrix. Because it has some 0 entries, we don’t automatically

know that it has a unique steady state vector. However, since the eigenvalues of 1
2
A are 1/2,

−1/2 and 1, it does have a unique steady state vector (only one eigenvalue has absolute value

1). To find it, we calculate the eigenvector of A with eigenvalue 2 by taking the nullspace of

A− 2I:

A− 2I =


−1 0 1

0 −1 1

1 1 −2

 (4)

 


−1 0 1

0 −1 1

0 0 0

 (5)

The nullspace is generated by the special solution (1, 1, 1). So, a vector u will have limit

A∞u equal to c(1
3
, 1

3
, 1

3
), where c is the sum of the components of u. In particular, the vectors

(3, 0, 0), etc., all go to (1, 1, 1).

5



4 (10 pts.) Suppose Ax = b has a solution (maybe many solutions). I want to prove

two facts:

A. There is a solution xrow in the row space C(AT).

B. There is only one solution in the row space.

(a) Suppose Ax = b. I can split that x into xrow + xnull with xnull in the

nullspace. How do I know that Axrow = b ? (Easy question)

(b) Suppose x∗row is in the row space and Ax∗row = b. I want to prove that

x∗row is the same as xrow. Their difference d = x∗row−xrow is in which

subspaces ? How to prove d = 0 ?

(c) Compute the solution xrow in the row space of this matrix A, by solving

for c and d:

 1 2 3

1 1 −1

xrow =

 14

9

 with xrow = c


1

2

3

+ d


1

1

−1

 .

Solution (10 points)

a) We have A(xrow + xnull) = A(xrow) + A(xnull) = A(xrow) + 0, so A(xrow) = b.

b) Suppose both A(xrow) = b and A(x∗row) = b. Then x∗row−xrow is in the row space (since it

is a linear combination of vectors in the row space) and is in the nullspace (since multiplying

by A will give us 0). Because the row space and nullspace are orthogonal complements, the

only vector that is in both is the 0 vector: any vector in both will have |x|2 = x · x = 0.
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c) Substituting in the given expressions for Axrow = b we find

 1 2 3

1 1 −1




1 1

2 1

3 −1


 c

d

 =

 14

9

 (6)

or  14 0

0 3

  c

d

 =

 14

9

 (7)

We find (c, d) = (1, 3), so xrow = (4, 5, 0). Remark: essentially what we are doing here is

projecting onto the row space.
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5 (10 pts.) The numbers Dn satisfy Dn+1 = 2Dn − 2Dn−1. This produces a first-order

system for un = (Dn+1, Dn) with this 2 by 2 matrix A: Dn+1

Dn

 =

 2 −2

1 0

  Dn

Dn−1

 or un = Aun−1 .

(a) Find the eigenvalues λ1, λ2 of A. Find the eigenvectors x1, x2 with

second entry equal to 1 so that x1 = (z1, 1) and x2 = (z2, 1).

(b) What is the inner product of those eigenvectors ? (2 points)

(c) If u0 = c1x1 + c2x2, give a formula for un. For the specific u0 = (2, 2)

find c1 and c2 and a formula for Dn.

Solution (10 points)

a) The eigenvalues of

A =

 2 −2

1 0

 (8)

satisfy the equation λ2 − 2λ+ 2 = 0, so λ1 = 1 + i and λ2 = 1− i. We find the eigenvectors

by taking the appropriate nullspaces:

A− λ1I =

 1− i −2

1 −1− i

 (9)

has nullspace generated by x1 = (1 + i, 1), and

A− λ2I =

 1 + i −2

1 −1 + i

 (10)

has nullspace generated by x2 = (1 − i, 1). If you pick a different vector in the nullspace,

you just rescale so that the bottom entry is 1.

b) The inner product is xH
1 x2 = (1−i)2+1 = 1−2i, or its conjugate expression xH

2 x1 = 1+2i.
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c) If u0 = c1x1 + c2x2, then un = c1λ
n
1x1 + c2λ

n
2x2. A matrix always acts on its eigenvectors

in a diagonal way. In particular, (2, 2) = x1 + x2. So we find

un = (1 + i)n

 1 + i

1

 + (1− i)n

 1− i

1

 (11)

with second entry Dn = (1 + i)n + (1− i)n.
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6 (12 pts.) (a) Suppose q1, q2, a3 are linearly independent, and q1 and q2 are already

orthonormal. Give a formula for a third orthonormal vector q3 as a

linear combination of q1, q2, a3.

(b) Find the vector q3 in part (a) when

q1 =
1

2


1

1

1

1

 q2 =
1

2


1

−1

1

−1

 a3 =


1

2

3

4


(c) Find the projection matrix P onto the subspace spanned by the first

two vectors q1 and q2. You can give a formula for P using q1 and q2 or

give a numerical answer.

Solution (12 points)

a) This is the Gram-Schmidt process. We define

w3 = a3 − (q1 · a3)q1 − (q2 · a3)q2 (12)

and then set q3 = w3/‖w3‖. Note that we do not need denominators in the expression for

w3 because the qi are already unit vectors.

b) Substituting in, we find

w3 = a3 − 5q1 − (−1)q2 = (−1,−1, 1, 1) (13)

Renormalizing we get q3 = 1
2
(−1,−1, 1, 1).

c) The projection matrix P is exactly the expression we used for Gram-Schmidt: P =

q1q
T
1 + q2q

T
2 . There are other more complicated expressions which are also correct. We can

start at the most general and simplify to get this one; if A has columns q1 and q2 then

P = A(ATA)−1AT = A(I)AT = q1q
T
1 + q2q

T
2 where we used the column-row picture of

multiplication for the last step.
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7 (12 pts.) (a) Find the determinant of this N matrix.

N =


1 0 0 4

2 1 0 3

3 0 1 2

4 0 0 1


(b) Using the cofactor formula for N−1, tell me one entry that is zero or

tell me that all entries of N−1 are nonzero.

(c) What is the rank of N − I ? Find all four eigenvalues of N .

Solution (12 points)

a) There are many ways to do this. Perhaps the easiest is cofactors along the top row:

det(N) = 1(1)− 4 det


2 1 0

3 0 1

4 0 0

 = 1− 4(4) = −15 (14)

Here I found the determinant of the 3 by 3 by swapping the columns to get an upper

triangular matrix with diagonal entries 1, 1, 4.

b) The cofactor formula is A−1 = CT/ det(A) (we know that A is invertible from part a).

To check for 0 entries we can ignore the det(A) part. We just need to find some cofactors

that are 0, and we can arrange this by crossing out rows and columns that will give us a

smaller matrix with a column of 0s. Some choices are C21, C23, C24, C31, C32, and C34. The

corresponding 0 entries of the inverse are the transposes, so we get the entries (1, 2), (3, 2),

(4, 2), (1, 3), (2, 3), (4, 3).
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c) The matrix N − I has two columns that are all 0s, and the other two columns are clearly

independent, so it has rank 2. So N − I has eigenvalue 0 with multiplicity 2. This tells us

that N has eigenvalue 1 with multiplicity 2. Calling the other eigenvalues λ1 and λ2, we can

find them solving the trace and determinant equations:

1 + 1 + λ1 + λ2 = 4 (15)

(1)(1)λ1λ2 = −15 (16)

Thus λ1 = 5 and λ2 = −3.
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8 (8 pts.) Every invertible matrix A is the product A = QH of an orthogonal matrix

Q and a symmetric positive definite matrix H. I will start the proof:

A has a singular value decomposition A = UΣV T.

Then A = (UV T)(V ΣV T).

(a) Show that UV T is an orthogonal matrix Q (what is the test for an

orthogonal matrix ?).

(b) Show that V ΣV T is a symmetric positive definite matrix. What are

its eigenvalues and eigenvectors ? Why did I need to assume that A is

invertible ?

Solution (8 points)

a) To test that Q = UV T is orthogonal, we must show that QTQ = I. But QTQ =

(UV T )TUV T = V UTUV T = V (I)V T = I. We used the fact that U and V are orthogonal

matrices.

b) The matrix H = V ΣV T is definitely symmetric, as HT = V ΣTV T = V ΣV T because Σ

is diagonal. Furthermore, note that the expression H = V ΣV T is a diagonalization of H.

This means that H has eigenvalues given by the entries of Σ and eigenvectors equal to the

columns of V . To show that H is positive-definite, we just need to show that the diagonal

entries of Σ are all positive.

Now, we know that they are all non-negative, because the SVD always gives us non-negative

singular values. We must also show that none of the singular values are zero. Remember

that the singular values are equal to the square roots of the eigenvalues of ATA. However,

because A is invertible, the matrix ATA is also invertible, and so can’t have any eigenvalues

equal to 0. So no singular value is 0 either.
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9 (7 pts.) (a) Find the inverse L−1 of this real triangular matrix L:

L =


1 0 0

a 1 0

0 a 1


You can use formulas or Gauss-Jordan elimination or any other method.

(b) Suppose D is the real diagonal matrix D = diag(d, d2, d3). What are

the conditions on a and d so that the matrix A = LDLT is (three

separate questions, one point each)

(i) invertible ? (ii) symmetric ? (iii) positive definite ?

Solution (7 points)

a) I’ll do Gauss-Jordan elimination.
1 0 0 1 0 0

a 1 0 0 1 0

0 a 1 0 0 1

  


1 0 0 1 0 0

0 1 0 −a 1 0

0 a 1 0 0 1

 (17)

 


1 0 0 1 0 0

0 1 0 −a 1 0

0 0 1 a2 −a 1

 (18)

b) Note that L is invertible no matter what a is, and D is invertible so long as d 6= 0. So

A = LDLT will be invertible whenever d 6= 0. If d = 0, then of course A can’t be invertible.

The matrix A is always symmetric, since AT = (LDLT )T = LDTLT = LDLT .

Because A is always symmetric, to check positive-definiteness we just need to check that the

pivots are all positive. But A = LDLT is the “pivot” decomposition for A. So the pivots of

A are d, d2, d3, and we need d > 0.
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10 (11 pts.) This problem uses least squares to find the plane C + Dx + Ey = b that

best fits these 4 points:

x= 0 y = 0 b= 2

x= 1 y = 1 b= 1

x= 1 y = −1 b= 0

x= −2 y = 0 b= 1

(a) Write down 4 equations Ax = b with unknown x = (C,D,E) that

would hold if the plane went through the 4 points. Then write down the

equations to solve for the best (least squares) solution x̂ = (Ĉ, D̂, Ê).

(b) Find the best x̂ and the error vector e (is the vector e in R3 or R4 ?).

(c) If you change this b = (2, 1, 0, 1) to the vector p = Ax̂, what will be

the best plane to fit these four new points (p1, p2, p3, p4) ? What will

be the new error vector ?

Solution (11 points)

a) The equations are of the form C + 0D + 0E = 2, etc., or in matrix form
1 0 0

1 1 1

1 1 −1

1 −2 0



C

D

E

 =


2

1

0

1

 (19)

Of course this system is not solvable. The best solution is given by ATAx̂ = AT b.
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b) We have

ATA =


4 0 0

0 6 0

0 0 2

 (20)

and

AT b =


4

−1

1

 (21)

It is a diagonal system, so we immediately find (C,D,E) = (1,−1/6, 1/2). The error vector

is the difference of the real b and the approximate values we get for our plane: e = b− Ax̂.

Since Ax̂ = [1, 4/3, 1/3, 4/3]T , we get e = (1,−1/3,−1/3,−1/3).

c) We know p = Ax̂ is the projection of b onto the column space of A. So the system Ax = p

is solvable exactly; we don’t need any approximations. The best fit plane will be the same

plane as in part b: 1 − x/6 + y/2 = b (we changed the b-coordinates of the points so that

they lie on this plane, so of course it is the best fit). The error vector will become 0 because

it is an exact fit.
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