

Thank you for taking 18.06.
If you liked it, you might enjoy 18.085 this fall.
Have a great summer. GS

1 (10 pts.) The matrix A and the vector b are

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

(a) The complete solution to $A x=b$ is $x=$ \qquad .
(b) $A^{\mathrm{T}} y=c$ can be solved for which column vectors $c=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$? (Asking for conditions on the c 's, not just c in $\boldsymbol{C}\left(A^{\mathrm{T}}\right)$.)
(c) How do those vectors c relate to the special solutions you found in part (a)?

Solution (10 points)

a) The complete solution is a particular solution x_{p} plus any vector in the nullspace x_{n}. Since the matrix A is already reduced, we can just read the special solutions off: $[-1,1,0,0]^{T}$ and $[-2,0,-4,1]^{T}$. To find a particular solution to $A x=b$, we put any numbers (we may as well choose 0) in for the free variables. This yields the two equations $x_{1}=3$ and $x_{3}=1$, so $x_{p}=[3,0,1,0]^{T}$. In the end we get

$$
x_{c o m p}=\left[\begin{array}{l}
3 \tag{1}\\
0 \\
1 \\
0
\end{array}\right]+c_{1}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \\
0 \\
-4 \\
1
\end{array}\right]
$$

b) You can do this computation by hand by augmenting A^{T} with the column $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ and row reducing. The solution is given by the equations that correspond to 0 rows in the reduced matrix. A quicker way is to note that $A^{T} y=c$ has a solution whenever c is in the column space $C\left(A^{T}\right)$, i.e. the row space of A. This is perpendicular to the nullspace. Thus, we can find the equations by taking a basis for the nullspace and using the components as coefficients in our equations. We find equations $-c_{1}+c_{2}=0$ and $-2 c_{1}-4 c_{3}+c_{4}=0$.
c) Because these c are in the row space, they are perpendicular to vectors in the nullspace of A, and in particular are perpendicular to the special solutions.

2 (8 pts.) (a) Suppose $q_{1}=(1,1,1,1) / 2$ is the first column of Q. How could you find three more columns q_{2}, q_{3}, q_{4} of Q to make an orthonormal basis? (Not necessary to compute them.)
(b) Suppose that column vector q_{1} is an eigenvector of $A: A q_{1}=3 q_{1}$. (The other columns of Q might not be eigenvectors of A.) Define $T=Q^{-1} A Q$ so that $A Q=Q T$. Compare the first columns of $A Q$ and $Q T$ to discover what numbers are in the first column of T ?

Solution (8 points)

a) First, we find additional vectors v_{2}, v_{3} and v_{4} that (along with q_{1}) make up a basis of \mathbb{R}^{4}. Then we run Gram-Schmidt on $q_{1}, v_{2}, v_{3}, v_{4}$.
b) Using the column picture of multiplication, we see that the first column of $A Q$ will be $A q_{1}=3 q_{1}$. Similarly, if we denote the first column of T by $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$, then the first column of $Q T$ will be $t_{1} q_{1}+t_{2} q_{2}+t_{3} q_{3}+t_{4} q_{4}$. Since these two are equal, we get an equality of vectors

$$
\begin{equation*}
3 q_{1}=t_{1} q_{1}+t_{2} q_{2}+t_{3} q_{3}+t_{4} q_{4} \tag{2}
\end{equation*}
$$

Since the q_{i} are linearly independent, we must have $t_{1}=3$ and the other $t_{i}=0$, showing that the first column of T is $(3,0,0,0)$.

We can also note that the first column of T is equal to $3 Q^{T} q_{1}$, which yields the same answer.

3 (12 pts.) Two eigenvalues of this matrix A are $\lambda_{1}=1$ and $\lambda_{2}=2$. The first two pivots are $d_{1}=d_{2}=1$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the other eigenvalue λ_{3} and the other pivot d_{3}.
(b) What is the smallest entry a_{33} in the southeast corner that would make A positive semidefinite? What is the smallest c so that $A+c I$ is positive semidefinite?
(c) Starting with one of these vectors $u_{0}=(3,0,0)$ or $(0,3,0)$ or $(0,0,3)$, and solving $u_{k+1}=\frac{1}{2} A u_{k}$, describe the limit behavior of u_{k} as $k \rightarrow \infty$ (with numbers).

Solution (12 points)

a) The sum of the eigenvalues is the trace, so $1+2+\lambda_{3}=2$. Thus $\lambda_{3}=-1$. The product of the pivots is the determinant, which is the product of the eigenvalues as well. So $d_{3}=-2$. Note that this means that A is not positive-definite.
b) We can test positive-definiteness using the determinant method. The two top-left determinants of A are both positive, so we just need to check the third one. We obtain the relation:

$$
\begin{equation*}
1(c-1)+1(-1) \geq 0 \tag{3}
\end{equation*}
$$

so the smallest value of c is 2 .
For the second part, we test whether the eigenvalues are non-negative. The eigenvalues of $A+c I$ are just the eigenvalues of A plus c. So when $c=1$ all the eigenvalues will be non-negative.
c) The matrix $\frac{1}{2} A$ is a Markov matrix. Because it has some 0 entries, we don't automatically know that it has a unique steady state vector. However, since the eigenvalues of $\frac{1}{2} A$ are $1 / 2$, $-1 / 2$ and 1 , it does have a unique steady state vector (only one eigenvalue has absolute value 1). To find it, we calculate the eigenvector of A with eigenvalue 2 by taking the nullspace of $A-2 I$:

$$
\begin{align*}
A-2 I & =\left[\begin{array}{rcc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & 1 & -2
\end{array}\right] \tag{4}\\
& \rightsquigarrow\left[\begin{array}{rcc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{align*}
$$

The nullspace is generated by the special solution $(1,1,1)$. So, a vector u will have limit $A^{\infty} u$ equal to $c\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, where c is the sum of the components of u. In particular, the vectors $(3,0,0)$, etc., all go to $(1,1,1)$.

4 (10 pts.) Suppose $A x=b$ has a solution (maybe many solutions). I want to prove two facts:
A. There is a solution $x_{\text {row }}$ in the row space $\boldsymbol{C}\left(A^{\mathrm{T}}\right)$.
B. There is only one solution in the row space.
(a) Suppose $A x=b$. I can split that x into $x_{\text {row }}+x_{\text {null }}$ with $x_{\text {null }}$ in the nullspace. How do I know that $A x_{\text {row }}=b$? (Easy question)
(b) Suppose $x_{\text {row }}^{*}$ is in the row space and $A x_{\text {row }}^{*}=b$. I want to prove that $x_{\text {row }}^{*}$ is the same as $x_{\text {row }}$. Their difference $d=x_{\text {row }}^{*}-x_{\text {row }}$ is in which subspaces? How to prove $d=0$?
(c) Compute the solution $x_{\text {row }}$ in the row space of this matrix A, by solving for c and d :

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 1 & -1
\end{array}\right] x_{\text {row }}=\left[\begin{array}{c}
14 \\
9
\end{array}\right] \quad \text { with } \quad x_{\mathrm{row}}=c\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+d\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
$$

Solution (10 points)

a) We have $A\left(x_{\text {row }}+x_{\text {null }}\right)=A\left(x_{\text {row }}\right)+A\left(x_{\text {rull }}\right)=A\left(x_{\text {row }}\right)+0$, so $A\left(x_{\text {row }}\right)=b$.
b) Suppose both $A\left(x_{\text {row }}\right)=b$ and $A\left(x_{\text {row }}^{*}\right)=b$. Then $x_{\text {row }}^{*}-x_{\text {row }}$ is in the row space (since it is a linear combination of vectors in the row space) and is in the nullspace (since multiplying by A will give us 0). Because the row space and nullspace are orthogonal complements, the only vector that is in both is the 0 vector: any vector in both will have $|x|^{2}=x \cdot x=0$.
c) Substituting in the given expressions for $A x_{\text {row }}=b$ we find

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \tag{6}\\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{c}
14 \\
9
\end{array}\right]
$$

or

$$
\left[\begin{array}{cc}
14 & 0 \tag{7}\\
0 & 3
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{c}
14 \\
9
\end{array}\right]
$$

We find $(c, d)=(1,3)$, so $x_{\text {row }}=(4,5,0)$. Remark: essentially what we are doing here is projecting onto the row space.

5 (10 pts.) The numbers D_{n} satisfy $D_{n+1}=2 D_{n}-2 D_{n-1}$. This produces a first-order system for $u_{n}=\left(D_{n+1}, D_{n}\right)$ with this 2 by 2 matrix A :

$$
\left[\begin{array}{c}
D_{n+1} \\
D_{n}
\end{array}\right]=\left[\begin{array}{rr}
2 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
D_{n} \\
D_{n-1}
\end{array}\right] \quad \text { or } \quad u_{n}=A u_{n-1}
$$

(a) Find the eigenvalues λ_{1}, λ_{2} of A. Find the eigenvectors x_{1}, x_{2} with second entry equal to 1 so that $x_{1}=\left(z_{1}, 1\right)$ and $x_{2}=\left(z_{2}, 1\right)$.
(b) What is the inner product of those eigenvectors? (2 points)
(c) If $u_{0}=c_{1} x_{1}+c_{2} x_{2}$, give a formula for u_{n}. For the specific $u_{0}=(2,2)$ find c_{1} and c_{2} and a formula for D_{n}.

Solution (10 points)
a) The eigenvalues of

$$
A=\left[\begin{array}{rr}
2 & -2 \tag{8}\\
1 & 0
\end{array}\right]
$$

satisfy the equation $\lambda^{2}-2 \lambda+2=0$, so $\lambda_{1}=1+i$ and $\lambda_{2}=1-i$. We find the eigenvectors by taking the appropriate nullspaces:

$$
A-\lambda_{1} I=\left[\begin{array}{cr}
1-i & -2 \tag{9}\\
1 & -1-i
\end{array}\right]
$$

has nullspace generated by $x_{1}=(1+i, 1)$, and

$$
A-\lambda_{2} I=\left[\begin{array}{cr}
1+i & -2 \tag{10}\\
1 & -1+i
\end{array}\right]
$$

has nullspace generated by $x_{2}=(1-i, 1)$. If you pick a different vector in the nullspace, you just rescale so that the bottom entry is 1 .
b) The inner product is $x_{1}^{H} x_{2}=(1-i)^{2}+1=1-2 i$, or its conjugate expression $x_{2}^{H} x_{1}=1+2 i$.
c) If $u_{0}=c_{1} x_{1}+c_{2} x_{2}$, then $u_{n}=c_{1} \lambda_{1}^{n} x_{1}+c_{2} \lambda_{2}^{n} x_{2}$. A matrix always acts on its eigenvectors in a diagonal way. In particular, $(2,2)=x_{1}+x_{2}$. So we find

$$
u_{n}=(1+i)^{n}\left[\begin{array}{c}
1+i \tag{11}\\
1
\end{array}\right]+(1-i)^{n}\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

with second entry $D_{n}=(1+i)^{n}+(1-i)^{n}$.

6 (12 pts.) (a) Suppose q_{1}, q_{2}, a_{3} are linearly independent, and q_{1} and q_{2} are already orthonormal. Give a formula for a third orthonormal vector q_{3} as a linear combination of q_{1}, q_{2}, a_{3}.
(b) Find the vector q_{3} in part (a) when

$$
q_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad q_{2}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \quad a_{3}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(c) Find the projection matrix P onto the subspace spanned by the first two vectors q_{1} and q_{2}. You can give a formula for P using q_{1} and q_{2} or give a numerical answer.

Solution (12 points)

a) This is the Gram-Schmidt process. We define

$$
\begin{equation*}
w_{3}=a_{3}-\left(q_{1} \cdot a_{3}\right) q_{1}-\left(q_{2} \cdot a_{3}\right) q_{2} \tag{12}
\end{equation*}
$$

and then set $q_{3}=w_{3} /\left\|w_{3}\right\|$. Note that we do not need denominators in the expression for w_{3} because the q_{i} are already unit vectors.
b) Substituting in, we find

$$
\begin{equation*}
w_{3}=a_{3}-5 q_{1}-(-1) q_{2}=(-1,-1,1,1) \tag{13}
\end{equation*}
$$

Renormalizing we get $q_{3}=\frac{1}{2}(-1,-1,1,1)$.
c) The projection matrix P is exactly the expression we used for Gram-Schmidt: $P=$ $q_{1} q_{1}^{T}+q_{2} q_{2}^{T}$. There are other more complicated expressions which are also correct. We can start at the most general and simplify to get this one; if A has columns q_{1} and q_{2} then $P=A\left(A^{T} A\right)^{-1} A^{T}=A(I) A^{T}=q_{1} q_{1}^{T}+q_{2} q_{2}^{T}$ where we used the column-row picture of multiplication for the last step.

7 (12 pts.) (a) Find the determinant of this N matrix.

$$
N=\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
2 & 1 & 0 & 3 \\
3 & 0 & 1 & 2 \\
4 & 0 & 0 & 1
\end{array}\right]
$$

(b) Using the cofactor formula for N^{-1}, tell me one entry that is zero or tell me that all entries of N^{-1} are nonzero.
(c) What is the rank of $N-I$? Find all four eigenvalues of N.

Solution (12 points)

a) There are many ways to do this. Perhaps the easiest is cofactors along the top row:

$$
\operatorname{det}(N)=1(1)-4 \operatorname{det}\left[\begin{array}{lll}
2 & 1 & 0 \tag{14}\\
3 & 0 & 1 \\
4 & 0 & 0
\end{array}\right]=1-4(4)=-15
$$

Here I found the determinant of the 3 by 3 by swapping the columns to get an upper triangular matrix with diagonal entries $1,1,4$.
b) The cofactor formula is $A^{-1}=C^{T} / \operatorname{det}(A)$ (we know that A is invertible from part a). To check for 0 entries we can ignore the $\operatorname{det}(A)$ part. We just need to find some cofactors that are 0 , and we can arrange this by crossing out rows and columns that will give us a smaller matrix with a column of 0 s. Some choices are $C_{21}, C_{23}, C_{24}, C_{31}, C_{32}$, and C_{34}. The corresponding 0 entries of the inverse are the transposes, so we get the entries (1,2), (3, 2), $(4,2),(1,3),(2,3),(4,3)$.
c) The matrix $N-I$ has two columns that are all 0 s , and the other two columns are clearly independent, so it has rank 2 . So $N-I$ has eigenvalue 0 with multiplicity 2 . This tells us that N has eigenvalue 1 with multiplicity 2 . Calling the other eigenvalues λ_{1} and λ_{2}, we can find them solving the trace and determinant equations:

$$
\begin{gather*}
1+1+\lambda_{1}+\lambda_{2}=4 \tag{15}\\
\text { (1)(1) } \lambda_{1} \lambda_{2}=-15 \tag{16}
\end{gather*}
$$

Thus $\lambda_{1}=5$ and $\lambda_{2}=-3$.

8 (8 pts.) Every invertible matrix A is the product $A=Q H$ of an orthogonal matrix Q and a symmetric positive definite matrix H. I will start the proof:
A has a singular value decomposition $A=U \Sigma V^{\mathrm{T}}$.
Then $A=\left(U V^{\mathrm{T}}\right)\left(V \Sigma V^{\mathrm{T}}\right)$.
(a) Show that $U V^{\mathrm{T}}$ is an orthogonal matrix Q (what is the test for an orthogonal matrix?).
(b) Show that $V \Sigma V^{\mathrm{T}}$ is a symmetric positive definite matrix. What are its eigenvalues and eigenvectors? Why did I need to assume that A is invertible?

Solution (8 points)

a) To test that $Q=U V^{T}$ is orthogonal, we must show that $Q^{T} Q=I$. But $Q^{T} Q=$ $\left(U V^{T}\right)^{T} U V^{T}=V U^{T} U V^{T}=V(I) V^{T}=I$. We used the fact that U and V are orthogonal matrices.
b) The matrix $H=V \Sigma V^{T}$ is definitely symmetric, as $H^{T}=V \Sigma^{T} V^{T}=V \Sigma V^{T}$ because Σ is diagonal. Furthermore, note that the expression $H=V \Sigma V^{T}$ is a diagonalization of H. This means that H has eigenvalues given by the entries of Σ and eigenvectors equal to the columns of V. To show that H is positive-definite, we just need to show that the diagonal entries of Σ are all positive.

Now, we know that they are all non-negative, because the SVD always gives us non-negative singular values. We must also show that none of the singular values are zero. Remember that the singular values are equal to the square roots of the eigenvalues of $A^{T} A$. However, because A is invertible, the matrix $A^{T} A$ is also invertible, and so can't have any eigenvalues equal to 0 . So no singular value is 0 either.

9 (7 pts.) (a) Find the inverse L^{-1} of this real triangular matrix L :

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & a & 1
\end{array}\right]
$$

You can use formulas or Gauss-Jordan elimination or any other method.
(b) Suppose D is the real diagonal matrix $D=\operatorname{diag}\left(d, d^{2}, d^{3}\right)$. What are the conditions on a and d so that the matrix $A=L D L^{T}$ is (three separate questions, one point each)
(i) invertible?
(ii) symmetric?
(iii) positive definite?

Solution (7 points)

a) I'll do Gauss-Jordan elimination.

$$
\begin{align*}
{\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
a & 1 & 0 & 0 & 1 & 0 \\
0 & a & 1 & 0 & 0 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -a & 1 & 0 \\
0 & a & 1 & 0 & 0 & 1
\end{array}\right] \tag{17}\\
& \rightsquigarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -a & 1 & 0 \\
0 & 0 & 1 & a^{2} & -a & 1
\end{array}\right] \tag{18}
\end{align*}
$$

b) Note that L is invertible no matter what a is, and D is invertible so long as $d \neq 0$. So $A=L D L^{T}$ will be invertible whenever $d \neq 0$. If $d=0$, then of course A can't be invertible. The matrix A is always symmetric, since $A^{T}=\left(L D L^{T}\right)^{T}=L D^{T} L^{T}=L D L^{T}$. Because A is always symmetric, to check positive-definiteness we just need to check that the pivots are all positive. But $A=L D L^{T}$ is the "pivot" decomposition for A. So the pivots of A are d, d^{2}, d^{3}, and we need $d>0$.

10 (11 pts.) This problem uses least squares to find the plane $C+D x+E y=b$ that best fits these 4 points:

$$
\begin{array}{lll}
x=0 & y=0 & b=2 \\
x=1 & y=1 & b=1 \\
x=1 & y=-1 & b=0 \\
x=-2 & y=0 & b=1
\end{array}
$$

(a) Write down 4 equations $A x=b$ with unknown $x=(C, D, E)$ that would hold if the plane went through the 4 points. Then write down the equations to solve for the best (least squares) solution $\widehat{x}=(\widehat{C}, \widehat{D}, \widehat{E})$.
(b) Find the best \widehat{x} and the error vector e (is the vector e in \mathbf{R}^{3} or \mathbf{R}^{4} ?).
(c) If you change this $b=(2,1,0,1)$ to the vector $p=A \widehat{x}$, what will be the best plane to fit these four new points $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$? What will be the new error vector?

Solution (11 points)
a) The equations are of the form $C+0 D+0 E=2$, etc., or in matrix form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{19}\\
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right]
$$

Of course this system is not solvable. The best solution is given by $A^{T} A \widehat{x}=A^{T} b$.
b) We have

$$
A^{T} A=\left[\begin{array}{lll}
4 & 0 & 0 \tag{20}\\
0 & 6 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

and

$$
A^{T} b=\left[\begin{array}{c}
4 \tag{21}\\
-1 \\
1
\end{array}\right]
$$

It is a diagonal system, so we immediately find $(C, D, E)=(1,-1 / 6,1 / 2)$. The error vector is the difference of the real b and the approximate values we get for our plane: $e=b-A \widehat{x}$. Since $A \widehat{x}=[1,4 / 3,1 / 3,4 / 3]^{T}$, we get $e=(1,-1 / 3,-1 / 3,-1 / 3)$.
c) We know $p=A \widehat{x}$ is the projection of b onto the column space of A. So the system $A x=p$ is solvable exactly; we don't need any approximations. The best fit plane will be the same plane as in part b: $1-x / 6+y / 2=b$ (we changed the b-coordinates of the points so that they lie on this plane, so of course it is the best fit). The error vector will become 0 because it is an exact fit.

