18.06 Problem Set 9

Due Wednesday, May 2, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/25

Do problem 7 of section 8.1 in your book.

Problem 2 Wednesday 4/25
(a) Show that for n masses joined by $(n+1)$ springs with both ends fixed and with all spring constants $c_{i}=1$, the stiffness matrix is

$$
K_{n}=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & \cdots \\
-1 & 2 & -1 & 0 & \cdots \\
0 & -1 & 2 & -1 & \cdots \\
& & \ddots & &
\end{array}\right]
$$

(the $n \times n$ tridiagonal matrix with 2 's on the main diagonal and -1 's on the subdiagonal and the superdiagonal.)
(b) Calculate the determinant $\operatorname{det}\left(K_{n}\right)$. (Hint: Try to express $\operatorname{det}\left(K_{n}\right)$ in terms of $\operatorname{det}\left(K_{n-1}\right)$ and $\operatorname{det}\left(K_{n-2}\right)$.
(c) Calculate, the inverse matrix K_{n}^{-1}, for $n=3,4,5$ and try to guess/calculate the answer for general n.
(d) Find the displacements of the n bodies. That is, solve $K_{n} u=[1, \ldots ., 1]^{T}$

Problem 3 Friday 4/27
Do problem 3 of section 6.6 in your book.

Problem 4 Friday 4/27
Do problem 11 of section 6.6 in your book.
Problem 5 Friday 4/27
Do problem 12 of section 6.6 in your book.

Problem 6 Friday 4/27
Do problem 20 of section 6.6 in your book.

Problem 7 Monday 4/30
Do problem 7 of section 6.7 in your book.

Problem 8 Monday 4/30
Do problem 9 of section 6.7 in your book.

Problem 9 Monday 4/30
Do problem 10 of section 6.7 in your book.

Problem 10 Monday 4/30
Do problem 15 of section 6.7 in your book.

