18.06 Problem Set 9 - Solutions

Due Wednesday, May 2, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/25
Do problem 7 of section 8.1 in your book.

Solution 1

$\begin{aligned} A & =\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1\end{array}\right]: 5 \times 4 \text { matrix } \\ C & =\left[\begin{array}{ccccc}c_{1} & 0 & 0 & 0 & 0 \\ 0 & c_{2} & 0 & 0 & 0 \\ 0 & 0 & c_{3} & 0 & 0 \\ 0 & 0 & 0 & c_{4} & 0 \\ 0 & 0 & 0 & 0 & c_{5}\end{array}\right]: 5 \times 5 \text { matrix }\end{aligned}$
$K=A^{T} C A=\left[\begin{array}{cccc}c_{1}+c_{2} & -c_{2} & 0 & 0 \\ -c_{2} & c_{2}+c_{3} & -c_{3} & 0 \\ 0 & -c_{3} & c_{3}+c_{4} & -c_{4} \\ 0 & 0 & -c_{4} & c_{4}+c_{5}\end{array}\right]: 4 \times 4$ matrix
When $C=I, K=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right], K u=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$,
then $u=K^{-1}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] . K^{-1}=\frac{1}{5}\left[\begin{array}{llll}4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4\end{array}\right]$, so $u=\left[\begin{array}{l}2 \\ 3 \\ 3 \\ 2\end{array}\right]$.

Problem 2 Wednesday 4/25
(a) Show that for n masses joined by $(n+1)$ springs with both ends fixed and with all spring constants $c_{i}=1$, the stiffness matrix is

$$
K_{n}=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & \cdots \\
-1 & 2 & -1 & 0 & \cdots \\
0 & -1 & 2 & -1 & \cdots \\
& & \ddots & &
\end{array}\right]
$$

(the $n \times n$ tridiagonal matrix with 2's on the main diagonal and -1 's on the subdiagonal and the superdiagonal.)
(b) Calculate the determinant $\operatorname{det}\left(K_{n}\right)$. (Hint: Try to express $\operatorname{det}\left(K_{n}\right)$ in terms of $\operatorname{det}\left(K_{n-1}\right)$ and $\operatorname{det}\left(K_{n-2}\right)$.
(c) Calculate, the inverse matrix K_{n}^{-1}, for $n=3,4,5$ and try to guess/calculate the answer for general n.
(d) Find the displacements of the n bodies. That is, solve $K_{n} u=[1, \ldots, 1]^{T}$

Solution 2

(a) A is $(n+1) \times n$ matrix such that $A_{i, i}=1, A_{i+1, i}=-1,0$ everywhere else.

Therefore, $K_{n}=A^{T} I A$ is a matrix such that $\left[K_{n}\right]_{i, i}=2,\left[K_{n}\right]_{i, i+1}=-1,\left[K_{n}\right]_{i+1, i}=-1,0$ everywhere else.
(b) $\operatorname{det} K_{n}=2 * \operatorname{det} K_{n-1}-(-1) *(-1) * \operatorname{det} K_{n-2}$ due to cofactor formula along the first row.

Since $K_{1}=2, K_{2}=3$, we can prove that $\operatorname{det} K_{n}=n+1$ by mathematical induction.
If $n=1,2$, then $\operatorname{det} K_{n}=n+1$
If $\operatorname{det} K_{n}=n+1$ holds for $n \leq m$, then $K_{m+1}=2 * \operatorname{det} K_{m}-(-1) *(-1) * \operatorname{det} K_{m-1}=m+2$.
By mathematical induction, $\operatorname{det}\left(K_{n}\right)=n+1$ for all n.
(c) $K_{3}^{-1}=\frac{1}{4}\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right], K_{4}^{-1}=\frac{1}{5}\left[\begin{array}{llll}4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4\end{array}\right], K_{5}^{-1}=\frac{1}{6}\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5\end{array}\right]$

Define R_{n} as follows.
For $i \geq j,\left[R_{n}\right]_{i, j}=\frac{1}{n+1} *(n+1-i) * j$.
For $j \geq i,\left[R_{n}\right]_{i, j}=\frac{1}{n+1} *(n+1-i) * j$ because K_{n} is symmetric.
This is the inverse of K_{n} because
$i \neq 1, n$
$\left[K_{n} R_{n}\right]_{i, j}=\Sigma_{r=1}^{r=n}\left[K_{n}\right]_{i, r} *\left[R_{n}\right]_{r, j}=\frac{1}{n+1} *\left(2 *\left[R_{n}\right]_{i, j}-\left[R_{n}\right]_{i-1, j}-\left[R_{n}\right]_{i+1, j}\right)$
$=1$ if $j=i, 0$ otherwise.
$i=1$
$\left[K_{n} R_{n}\right]_{1, j}=\sum_{r=1}^{r=n}\left[K_{n}\right]_{1, r} *\left[R_{n}\right]_{r, j}=\frac{1}{n+1} *\left(2 *\left[R_{n}\right]_{1, j}-\left[R_{n}\right]_{2, j}\right)$
$=1$ if $j=1,0$ otherwise.
$i=n$
$\left[K_{n} R_{n}\right]_{n, j}=\Sigma_{r=1}^{r=n}\left[K_{n}\right]_{n, r} *\left[R_{n}\right]_{r, j}=\frac{1}{n+1} *\left((-1) *\left[R_{n}\right]_{n-1, j}+2 *\left[R_{n}\right]_{n, j}\right)$
$=1$ if $j=1,0$ otherwise.
(d) $u=R_{n}[1, \ldots, 1]^{T}$,
so $u_{k}=\Sigma$ elements in k th row in $R_{n}=\frac{\sum_{i=1}^{i=k}(n+1-k) * i}{n+1}+\frac{\Sigma_{i=1}^{i=n-k} k * i}{n+1}=\frac{k(n+1-k)}{2}$

Problem 3 Friday 4/27
Do problem 3 of section 6.6 in your book.

Solution 3

If $B=M^{-1} A M$ then $M B=A M$. Let $M=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$
$\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \leftrightarrow\left[\begin{array}{ll}0 & x+y \\ 0 & z+w\end{array}\right]=\left[\begin{array}{ll}x & y \\ x & y\end{array}\right]$
This holds for $x=0, y=1, z=1, w=0, M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \leftrightarrow\left[\begin{array}{cc}x+y & x+y \\ z+w & z+w\end{array}\right]=\left[\begin{array}{cc}x-z & y-w \\ -x+z & -y+w\end{array}\right]$
This holds for $x=0, y=1, z=-1, w=0, M=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \leftrightarrow\left[\begin{array}{cc}4 x+2 y & 3 x+y \\ 4+2 w & 3 z+1 w\end{array}\right]=\left[\begin{array}{cc}x+2 z & y+2 w \\ 3 x+4 z & 3 y+4 w\end{array}\right]$
This holds for $x=3, y=1, z=-2, w=2, M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Problem 4 Friday 4/27
Do problem 11 of section 6.6 in your book.

Solution 4

$d w / d t=5 w+x$, then we can guess $w=\left(w(0)+t x(0)+\frac{t^{2}}{2} y(0)+\frac{t^{3}}{6} z(0)\right) e^{5 t}$.
This satisfies $d w / d t=5 w+x$ because
$d w / d t=5 *\left(w(0)+t x(0)+\frac{t^{2}}{2} y(0)+\frac{t^{3}}{6} z(0)\right) e^{5 t}+\left(x(0)+t y(0)+\frac{t^{2}}{2} z(0)\right) e^{5 t}=5 w+x$.

Problem 5 Friday 4/27
Do problem 12 of section 6.6 in your book.

Solution 5

Let $M=\left[\begin{array}{lllc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$.
$J M$ has 1 st row $=2$ nd row of $\mathrm{M}, 2$ nd row $=0,3$ rd row $=4$ th row of $\mathrm{M}, 4$ rd row $=0$.
$M K$ has first column $=0$, 2 nd column $=1$ st column of $\mathrm{M}, 3 \mathrm{rd}$ column=3rd column of $\mathrm{M}, 4 \mathrm{th}$ column $=0$.
$M K=\left[\begin{array}{llll}0 & a & b & 0 \\ 0 & e & f & 0 \\ 0 & i & j & 0 \\ 0 & m & n & 0\end{array}\right]=J M=\left[\begin{array}{cccc}e & f & g & h \\ 0 & 0 & 0 & 0 \\ m & n & o & p \\ 0 & 0 & 0 & 0\end{array}\right]$.
Comparing each side, we can figure out $e=f=h=0, m=n=p=0$.
\therefore The 2 nd row and 4 rd row of M is linearly dependent.
$\therefore \mathrm{M}$ is not invertible.

Problem 6 Friday 4/27

Do problem 20 of section 6.6 in your book.

Solution 6

(a) Let $A=M B M^{-1}$. Then, $A^{2}=M B M^{-1} M B M^{-1}=M B^{2} M^{-1}$, so A^{2} is similar to B^{2}.
(b) Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Then, $A^{2}=B^{2}=0$, so A^{2} and B^{2} are similar, but A and B have diffrent rank, so A and B are not similar.
(c)Both matrices are diagonalizable to $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$, so they are similar.
(d) $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ is diagonalizable, but $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ is not diagonalizable, so they cannot be similar matrices.
(e) The new matrix is $P A P^{-1}$ where P is permutation matrix P_{12}.

Problem 7 Monday 4/30

Do problem 7 of section 6.7 in your book.

Solution 7

$A A^{T}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
eigenvalues: 1,3 with eigenvectors : $w_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right], w_{3}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$A^{T} A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$
eigenvalues: $0,1,3$ with eigenvectors $v_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right], v_{3}=\left[\begin{array}{l}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right], v_{0}=\left[\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$
$V=\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\ 0 & 2 / \sqrt{6} & -1 / \sqrt{3} \\ -1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3}\end{array}\right]$
$A v_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,
$A v_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]=1 * u_{1}$, where $u_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$
$A v_{3}=\left[\begin{array}{l}3 / \sqrt{6} \\ 3 / \sqrt{6}\end{array}\right]=\sqrt{3} * u_{3}$, where $u_{3}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$U=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right] \Sigma=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \sqrt{3} & 0\end{array}\right] V^{T}=\left[\begin{array}{ccc}1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ 1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right]$
$U \Sigma V^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$

Problem 8 Monday 4/30
Do problem 9 of section 6.7 in your book.

Solution 8

A is rank $1,3 \times 4$ matrix. $A v=\sigma u$, so $\sigma=12$.
Because $C(A)$ has dimension 1 , we have only one singular value.
u is in the column space, so we can write $A=\left[\begin{array}{cccc}2 a & 2 b & 2 c & 2 d \\ 2 a & 2 b & 2 c & 2 d \\ a & b & c & d\end{array}\right]$ for some a,b,c,d.
$A^{T} A v=\sigma^{2} v=\sigma A^{T} u \rightarrow \sigma v=x d v A^{T} u=\left[\begin{array}{l}3 a \\ 3 b \\ 3 c \\ 3 d\end{array}\right] \rightarrow a=b=c=d=2$.
$\therefore A=\left[\begin{array}{llll}4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 2 & 2 & 2 & 2\end{array}\right]$

Problem 9 Monday 4/30

Do problem 10 of section 6.7 in your book.

Solution 9

Suppose A is a $m \times n$ matrix. Notice that since the columns are orthogonal, they are linearly independent, so the rank of A is n and $n \leq m$.
$A^{T} A=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right)$
and eigenvector matrix for diagonal matrix $\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right)$ is $I_{n \times n}=V$.
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ augmented by $(m-n) \times n 0$ matrix in the bottom.
U has columns such that $\sigma_{i} u_{i}=A v_{i}=w_{i} \rightarrow u_{i}=\sigma_{i}^{-1} w_{i} . \quad\left(\sigma_{i} \neq 0\right)$
U is a matrix whose i th column is $\frac{1}{\sigma_{i}} w_{i}$ for $i \leq n$. For $i>n$, choose and orthonormal basis for the nullspace of A.

Problem 10 Monday 4/30
Do problem 15 of section 6.7 in your book.

Solution 10

(a)If $A=U \Sigma V^{T}$, then $4 A=U *(4 \Sigma) * V^{T}$. Here, SVD changes $(U, \Sigma, V) \rightarrow(U, 4 \Sigma, V)$.
(b)If $A=U \Sigma V^{T}$, then $A^{T}=V * \Sigma * U^{T}$. Here, SVD changes $(U, \Sigma, V) \rightarrow(V, \Sigma, U)$.

If $A=U \Sigma V^{T}$, then $A^{-1}=\left(V^{T}\right)^{-1} * \Sigma^{-1} * U^{-1}=V \Sigma^{-1} * U^{T}$.
Here, SVD changes $(U, \Sigma, V) \rightarrow\left(V, \Sigma^{-1}, U\right)$.

