18.06 Problem Set 8 Due Wednesday, April 25, 2007 at **4:00 p.m.** in 2-106

Problem 1 Wednesday 4/18

Do problem 5 of section 6.3 in your book.

Problem 2 Wednesday 4/18

Do problem 11 of section 6.3 in your book.

Problem 3 Wednesday 4/18

Let

A =	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	2 1 0 0	$3 \\ 2 \\ 1 \\ 0$.
	Lu	0	0	0_	

(a) What are the eigenvalues of A?

(b) How many linearly independent eigenvectors does A have? Find them.

(c) Find e^{At} .

(d) Find the solution to the differential equation $\frac{du}{dt} = Au$ when $u(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

Problem 4 Friday 4/20

Do problem 9 of section 6.4 in your book.

Problem 5 Friday 4/20

Do problem 16 of section 6.4 in your book.

Problem 6 Friday 4/20

Do problem 18 of section 6.4 in your book.

Problem 7 Friday 4/20

Do problem 27 of section 6.4 in your book.

Problem 8 Monday 4/23

Do problem 4 of section 6.5 in your book.

Problem 9 Monday 4/23

Do problem 19 of section 6.5 in your book.

Problem 10 Monday 4/23

Let A be any 3×3 symmetric matrix. Is it true that for large enough t, A + tI is positive definite?