18.06 Problem Set 8 - Solutions

Due Wednesday, April 25, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/18

Do problem 5 of section 6.3 in your book.

Solution 1

To show $v+w$ is constant we need to show $\frac{d}{d t}(v+w)=0$. We have

$$
\frac{d}{d t}(v+w)=\frac{d v}{d t}+\frac{d w}{d t}=w-v+v-w=0
$$

So $v+w$ is constant and since $v(0)=30$ and $w(0)=10$, it is equal to 40 .
The matrix is $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$. To find the eigenvalues we solve $\lambda^{2}+2 \lambda=0$. We get $\lambda_{1}=0$ and $\lambda_{2}=-2$. The corresponding eigenvectors are $x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
At $t=1$ we have $v(1)=20+10 e^{-2}$ and $w(1)=20-10 e^{-2}$.

Problem 2 Wednesday 4/18
Do problem 11 of section 6.3 in your book.

Solution 2

(a) $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ i\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}1 \\ -i\end{array}\right]$.
(b) $\mathbf{u}(t)=\frac{1}{2} e^{i t}\left[\begin{array}{l}1 \\ i\end{array}\right]+\frac{1}{2} e^{-i t}\left[\begin{array}{c}1 \\ -i\end{array}\right]=\frac{1}{2}\left[e^{i t}+e^{-i t} ; i\left(e^{i t}-e^{-i t}\right)\right]=\left[\begin{array}{c}\cos t \\ -\sin t\end{array}\right]$.

Problem 3 Wednesday 4/18
Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) What are the eigenvalues of A ?
(b) How many linearly independent eigenvectors does A have? Find them.
(c) Find $e^{A t}$.
(d) Find the solution to the differential equation $\frac{d u}{d t}=A u$ when $u(0)=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1\end{array}\right]^{T}$.

Solution 3
(a) A is upper triangular, so the eigenvalues are the entries in the diagonal: $0,0,0,0$.
(b) A has rank 3 , so there is only one linearly independent eigenvector: $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(c) Since A is not diagonalizable, we can't use diagonalization for this. Instead, let's compute the powers of A :
$A=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], A^{2}=\left[\begin{array}{llll}0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], A^{3}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], A^{4}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Thus, $e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{6} A^{3} t^{3}=\left[\begin{array}{cccc}1 & t & 2 t=\frac{1}{2} t^{2} & 3 t+2 t^{2}+\frac{1}{6} t^{3} \\ 0 & 1 & t & 2 t+\frac{1}{2} t^{2} \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1\end{array}\right]$.
(d) $\mathbf{u}(t)=e^{A t} \mathbf{u}(0)=\left[\begin{array}{c}1+6 t+\frac{5}{2} t^{2}+\frac{1}{6} t^{3} \\ 1+3 t+\frac{1}{2} t^{2} \\ 1+t^{2} \\ 1\end{array}\right]$.

Note that you could have solved this system by back substitution as well, by first solving u_{4} and going up.

Problem 4 Friday 4/20
Do problem 9 of section 6.4 in your book.

Solution 4

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvalues of the matrix. If the three eigenvalues are real there is nothing to prove. So let $\lambda_{1}=a+b i$ with $b \neq 0$. Then we know that $\lambda_{2}=a-b i$. Also, $\lambda_{1}+\lambda_{2}+\lambda_{3}=$ $2 a+\lambda_{3}=$ Trace, and the trace is real, so λ_{3} has to be real.

Problem 5 Friday 4/20
Do problem 16 of section 6.4 in your book.

Solution 5

(a) $\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{c}\mathbf{y} \\ -\mathbf{z}\end{array}\right]=\left[\begin{array}{c}-A \mathbf{z} \\ A^{T} \mathbf{y}\end{array}\right]=\left[\begin{array}{c}-\lambda \mathbf{y} \\ \lambda \mathbf{z}\end{array}\right]=-\lambda\left[\begin{array}{c}\mathbf{y} \\ -\mathbf{z}\end{array}\right]$. Thus we know that $-\lambda$ is an eigenvalues with corresponding eigenvector $\left[\begin{array}{c}\mathbf{y} \\ -\mathbf{z}\end{array}\right]$.
(b) $A^{T} A \mathbf{z}=A^{T}(\lambda \mathbf{y})=\lambda A^{T} \mathbf{y}=\lambda^{2} \mathbf{z}$. Thus we have that λ^{2} is an eigenvalues for $A^{T} A$ with corresponding eigenvector \mathbf{z}.
(c) From part (b) we know that λ^{2} is an eigenvalue for $A^{T} A=I^{T} I=I$, so $\lambda^{2}=1$, thus $\lambda= \pm 1$. From part (a) we know that if λ is an eigenvalue so is $-\lambda$, thus we conclude that the eigenvalues are $1,1,-1,-1$. Notice that for $\lambda=1$, we must have $\mathbf{y}=\mathbf{z}$ and for $\lambda=-1$ we must have $\mathbf{y}=-\mathbf{z}$. Four eigenvectors for B are:

$$
\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right] .
$$

Problem 6 Friday 4/20
Do problem 18 of section 6.4 in your book.

Solution 6

The nullspace and the row space are always perpendicular. But for a symmetric matrix, row space $=$ column space. So if y is an eigenvector for $\lambda \neq 0$ (in the column space), it must be perpendicular to the set of eigenvectors for $\lambda=0$ (the nullspace). (And perpendicular to the other eigenspaces $\lambda=\beta$ too - use $A-\beta I$ (also symmetric) instead, and the same argument.)

Problem 7 Friday 4/20
Do problem 27 of section 6.4 in your book.

Solution 7

The other eigenvector is ${ }_{1}^{1}$ (eigenvalue $\lambda=1+10^{-15}$), which makes an angle with the other eigenvector $\begin{aligned} & 1 \\ & 0\end{aligned}$ of only $45^{\circ}=\pi / 4$! Moral: eigenvectors are very sensitive to roundoff error.

Problem 8 Monday 4/23
Do problem 4 of section 6.5 in your book.

Solution 8

You can do this by partial derivatives, or you can do this using positive definite.
Note that
$f(x, y)=x^{2}+4 x y+3 y^{2}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
Thus, this equation has a minimum at $(0,0)$ if and only if the matrix $\begin{array}{lll}1 & 2 \\ 2 & 3\end{array}$ is positive definite. The upper left determinants are 1 and -1 , thus the matrix is not positive definite, f doesn't have a minimum at $(0,0)$.
We can also see this my expressing f as a difference of squares;

$$
f(x, y)=(x+2 y)^{2}-y^{2}
$$

When $x=-2$ and $y=1$, we get $f=-1$.

Problem 9 Monday 4/23
Do problem 19 of section 6.5 in your book.

Solution 9

Since A is symmetric, it has orthogonal eigenvectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. Then $\mathbf{x}=c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}$, so

$$
\mathbf{x}^{T} A \mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)^{T} A\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)^{T}\left(c_{1} \lambda \mathbf{x}_{1}+\cdots+c_{n} \lambda \mathbf{x}_{n}\right) .
$$

Since the eigenvectors are orthogonal, we have $\mathbf{x}_{i}^{T} \mathbf{x}_{j}=0$ if $i \neq j$, so

$$
\mathbf{x}^{T} A \mathbf{x}=c_{1}^{2} \lambda \mathbf{x}_{1}^{T} \mathbf{x}_{1}+\cdots+c_{n}^{2} \lambda \mathbf{x}_{n}^{T} \mathbf{x}_{n}>0
$$

when $\mathbf{x} \neq 0$ since $c_{i}^{2}>0, \lambda_{i}>0$ and $\mathbf{x}_{i}^{T} \mathbf{x}_{i}=\left\|\mathbf{x}_{i}\right\|^{2}>0$.
Problem 10 Monday 4/23
Let A be any 3×3 symmetric matrix. Is it true that for large enough $t, A+t I$ is positive definite?

Solution 10

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvalues of A. Since A is symmetric they are real. The eigenvalues of $A+t I$ are $\lambda_{1}+t, \lambda_{2}+t, \lambda_{3}+t$. We just need to take t large enough such that $\lambda_{1}+t, \lambda_{2}+t, \lambda_{3}+t$ are all positive, which can be done by taking t to be larger than the absolute value of the smallest of the λ 's.

