18.06 Problem Set 7

Due Wednesday, April 18, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/11
Do problem 9 of section 8.3 in your book.

Problem 2 Wednesday 4/11
Do problem 12 of section 8.3 in your book.

Problem 3 Wednesday 4/11
Consider the random walk on the directed graph shown below. More precisely, there are 5 nodes and $\operatorname{Prob}(i, i+1)=\operatorname{Prob}(i, i-1)=1 / 2$ for $i=2,3,4$; and $\operatorname{Prob}(1,2)=\operatorname{Prob}(5,4)=1$. Here $\operatorname{Prob}(i, j)$ is the probability to go from the i-th node to the j-th node.

Find the eigenvalues and the steady state distribution for this Markov chain.

Problem 4 Wednesday 4/11
Consider the 3×2 grid shown below. Assume an ant starts in vertex 1 . At every step, if the ant is in vertex i, it either stays where it is with probability $\frac{1}{2 i}$ or moves to an adjacent vertex selected uniformly among the current neighbors.

(a) What matrix A represents this Markov Chain?
(b) What is the sum of the eigenvalues of A ?
(c) Use MATLAB to compute the eigenvalues of A.
(d) What is the steady state? What is the probability that in the steady state the ant is on vertex 6 ?

Problem 5 Friday 4/13
Do problem 2 of section 8.5 in your book.

Problem 6 Friday 4/13
Do problem 12 of section 8.5 in your book. You don't have to write the "differentiation matrix" (this involves concepts of chapter 7 that you haven't learned yet).

Problem 7 Friday 4/13
Do problem 1 of section 10.2 in your book.

Problem 8 Friday 4/13
Do problem 10 of section 10.2 in your book.

Problem 9 Friday 4/13
Do problem 16 of section 10.2 in your book.

Problem 10 Friday 4/13
Do problem 17 of section 10.2 in your book.

