18.06 Problem Set 6

Due Wednesday, April 11, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/4

Do problem 9 of section 6.1 in your book.

Problem 2 Wednesday 4/4
Do problem 28 of section 6.1 in your book.

Problem 3 Wednesday 4/4
Do problem 33 of section 6.1 in your book.

Problem 4 Wednesday 4/4

Let A be a fixed $n \times n$ matrix. We would like to find a matrix B such that $A B=B A$. This is the same as solving $A B-B A=$ zero matrix. It turns out that this is a system of n^{2} equations on the entries of B (which are unknown). Since all these equations are linear, we can associate this system to a matrix M. Find an eigenvector of this matrix M with its corresponding eigenvalue.

Problem 5 Monday 4/9
Do problem 7 of section 6.2 in your book.

Problem 6 Monday 4/9
Do problem 10 of section 6.2 in your book.

Problem 7 Monday 4/9
Do problems 15 and 16 of section 6.2 in your book.

Problem 8 Monday 4/9
Do problem 22 of section 6.2 in your book.

Problem 9 Monday 4/9
Do problem 28 of section 6.2 in your book.

Problem 10 Monday 4/9
(a) Give an example of a 3×3 matrix $A \neq 0$ such that $A^{2} \neq 0$ but $A^{3}=0$. Four your A find all the eigenvalues and the eigenvectors.
(b) Now, let B be a diagonalizable matrix such that there exists some positive integer k such that $B^{k}=0$. Prove that $B=0$.
(c) Does part (b) contradict part (a)? Explain your answer.

