18.06 Problem Set 6 - Solutions

Due Wednesday, April 11, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/4

Do problem 9 of section 6.1 in your book.

Solution 1

(a) Multiply A on the left to both sides of the equation $A x=\lambda x$ to get $A A x=A \lambda x$. But $A A x=A^{2} x$ and $A \lambda x=\lambda A x=\lambda \lambda x=\lambda^{2} x$, so we have $A^{2} x=\lambda^{2} x$, which means that λ^{2} is an eigenvalue of A^{2}.
(b)Multiply $\lambda^{-1} A^{-1}$ on the left to both sides of the equation $A x=\lambda x$ to get $\lambda^{-1} A^{-1} A x=$ $\lambda^{-1} A^{-1} \lambda x$. But $\lambda^{-1} A^{-1} A x=\lambda^{-1} x$ and $\lambda^{-1} A^{-1} \lambda x=A^{-1} \lambda^{-1} \lambda x=A^{-1} x$, so we have $A^{-1} x=$ $\lambda^{-1} x$, which means that λ^{-1} is an eigenvalue of A^{-1}.
(c)Add x to both sides of the equation $A x=\lambda x$ to get $A x+x=\lambda x+x$. But this is exactly $(A+I) x=(\lambda+1) x$, which means that $\lambda+1$ is an eigenvalue of $A+I$.

Problem 2 Wednesday 4/4

Do problem 28 of section 6.1 in your book.

Solution 2

The matrix A has rank 1 (all rows are equal), which implies that 0 is an eigenvalue of A (the three independent vectors in the nullspace of A are the three independent eigenvectors with eigenvalue 0). Now let us find other eigenvalues. If $(x, y, z, w)^{T}$ is an eigenvector with eigenvalue $\lambda \neq 0$, then:

$$
A\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
x+y+z+w \\
x+y+z+w \\
x+y+z+w \\
x+y+z+w
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

But this implies that $x=y=z=w$ and furthermore $\lambda=4$. Thus, the four eigenvalues of A are $0,0,0,4$.
The matrix B has rank 2 (rows 1 and 3 are equal, rows 2 and 4 are equal), which implies that 0 is an eigenvalue of A (the two independent vectors in the nullspace of A are the two independent eigenvectors with eigenvalue 0). Now let us find other eigenvalues. If $(x, y, z, w)^{T}$ is an eigenvector with eigenvalue $\lambda \neq 0$, then:

$$
A\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
x+z \\
y+w \\
x+z \\
y+w
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

But this implies that $x=z$ and $y=w$, and furthermore $\lambda=2$ (we get two independent eigenvectors here: $(1,0,1,0)^{T}$ and $\left.(0,1,0,1)^{T}\right)$. Thus, the four eigenvalues of A are $0,0,2,2$.

Problem 3 Wednesday 4/4
Do problem 33 of section 6.1 in your book.

Solution 3

(a) Since u, v, w are independent, any vector x can be written as a linear combination of those, $x=c_{1} u+c_{2} v+c_{3} w$. Then

$$
A x=A\left(c_{1} u+c_{2} v+c_{3} w\right)=c_{1} A u+c_{2} A v+c_{3} A w=3 c_{2} v+5 c_{3} w
$$

If $A x=0$, then we must have $c_{2}, c_{3}=0$, so the vectors in the nullspace of A are multiples of u, and a basis for $N(A)$ is the vector u.
All vectors $A x$ in the column space of A are linear combinations of v and w : a basis for $C(A)$ consists of the vectors v and w.
(b) We want to find the solutions of $A x=v+w$. Let $x=c_{1} u+c_{2} v+c_{3} w$. Then as seen above $A x=3 c_{2} v+5 c_{3} w$, so we must have $c_{2}=\frac{1}{3}$ and $c_{3}=\frac{1}{5}$, while c_{1} can take any values. The solution for this is of the form $x=c_{1} u+\frac{1}{3} v+\frac{1}{5} w$.
(c) $A x=u$ has no solution because if it did then u would be in the column space.

Problem 4 Wednesday 4/4
Let A be a fixed $n \times n$ matrix. We would like to find a matrix B such that $A B=B A$. This is the same as solving $A B-B A=$ zero matrix. It turns out that this is a system of n^{2} equations on the entries of B (which are unknown). Since all these equations are linear, we can associate this system to a matrix M. Find an eigenvector of this matrix M with its corresponding eigenvalue.

Solution 4

We have $M x=0$ exactly when the vector x corresponds to a matrix B that satisfies $A B-B A=0$. But there is one case of such a matrix that is quite simple: just take B to be the matrix A itself! Then clearly $A A-A A=0$! So if x is the vector corresponding to the matrix A, then $M x=0$, and this means that x is an eigenvector of M, with eigenvalue 0 .

Problem 5 Monday 4/9
Do problem 7 of section 6.2 in your book.

Solution 5

W e begin by computing the eigenvalues of A, solving $\operatorname{det}(A-\lambda I)=0$ for λ.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
4-\lambda & 0 \\
1 & 2-\lambda
\end{array}\right]=(4-\lambda)(2-\lambda)
$$

The eigenvalues are $\lambda=2$ and $\lambda=4$.
Now, for each eigenvalue λ, we want to find the eigenvectors, i.e., vectors in the nullspace of $A-\lambda I$. For $\lambda=2$, we have $A-2 I=\left[\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right]$, so $N(A-2 I)$ is generated by the vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Thus, any vector of the form $\left[\begin{array}{l}0 \\ a\end{array}\right]$ with $a \neq 0$ is a suitable eigenvector. For $\lambda=4$, we have $A-4 I=\left[\begin{array}{cc}0 & 0 \\ 1 & -2\end{array}\right]$, so $N(A-4 I)$ is generated by the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Thus, any vector of the form $\left[\begin{array}{c}2 b \\ b\end{array}\right]$ with $b \neq 0$ is a suitable eigenvector. Writing in these vectors as columns of a matrix we get a matrix S that diagonalizes A :

$$
S=\left[\begin{array}{cc}
0 & 2 b \\
a & b
\end{array}\right] \quad \Lambda=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]
$$

If we switch the columns, we still get a matrix that diagonalizes A :

$$
S=\left[\begin{array}{cc}
2 b & 0 \\
b & a
\end{array}\right] \quad \Lambda=\left[\begin{array}{cc}
4 & 0 \\
0 & 2
\end{array}\right]
$$

We know that if x is an eigenvector of A (with eigenvalue λ), then it is also an eigenvector of A^{-1} (with eigenvalue λ^{-1}), so the same matrices S work for diagonalizing A^{-1} (the diagonal matrix changes accordingly).

Problem 6 Monday 4/9

Do problem 10 of section 6.2 in your book.

Solution 6

T he equations $G_{k+2}=\frac{1}{2} G_{k+1}+\frac{1}{2} G_{k}$ and $G_{k+1}=G_{k+1}$ can be written in matrix form as

$$
\left[\begin{array}{l}
G_{k+2} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
G_{k+1} \\
G_{k}
\end{array}\right]
$$

(a)Firstly, we find the eigenvalues of $A=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ 1 & 0\end{array}\right]$ by solving $\operatorname{det}(A-\lambda I)=0$ for λ :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
\frac{1}{2}-\lambda & \frac{1}{2} \\
1 & -\lambda
\end{array}\right]=(\lambda-1)\left(\lambda+\frac{1}{2}\right)
$$

The eigenvalues are $\lambda=1$ and $\lambda=-\frac{1}{2}$.
Now, we find the eigenvectors for each λ. For $\lambda=1$, we have $A-I=\left[\begin{array}{cc}-\frac{1}{2} & \frac{1}{2} \\ 1 & -1\end{array}\right]$, so $N(A-I)$ is generated by the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and this is an eigenvector. For $\lambda=-\frac{1}{2}$, we have $A+\frac{1}{2} I=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 1 & \frac{1}{2}\end{array}\right]$, so $N\left(A+\frac{1}{2} I\right)$ is generated by the vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and this is another eigenvector.
(b) The eigenvector matrix is $S=\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]$, its inverse is $S^{-1}=\frac{1}{3}\left[\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right]$, and the eigenvalue matrix is $\Lambda=\left[\begin{array}{cc}1 & 0 \\ 0 & -\frac{1}{2}\end{array}\right]$. Then $A^{n}=S \Lambda^{n} S^{-1}$. As $n \rightarrow \infty$,

$$
\Lambda^{n}=\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right]^{n}=\left[\begin{array}{cc}
1^{n} & 0 \\
0 & \left(-\frac{1}{2}\right)^{n}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Then,

$$
A^{n}=S \Lambda^{n} S^{-1} \rightarrow\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]
$$

(c) Applying A repeatedly to $\left[\begin{array}{l}G_{1} \\ G_{0}\end{array}\right]$ we get

$$
\left[\begin{array}{c}
G_{n+1} \\
G_{n}
\end{array}\right]=A^{n}\left[\begin{array}{c}
G_{1} \\
G_{0}
\end{array}\right]
$$

But $A^{n}\left[\begin{array}{l}G_{1} \\ G_{0}\end{array}\right] \rightarrow \frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{2}{3} \\ \frac{2}{3}\end{array}\right]$, which implies that $\left[\begin{array}{c}G_{n+1} \\ G_{n}\end{array}\right] \rightarrow\left[\begin{array}{c}\frac{2}{3} \\ \frac{2}{3}\end{array}\right]$, that is, the Gibonacci numbers G_{n} approach $\frac{2}{3}$.

Problem 7 Monday 4/9
Do problems 15 and 16 of section 6.2 in your book.

Solution 7

Problem 15
If the eigenvalues of A are $2,2,5$ then the matrix is certainly invertible, as its determinant is $\operatorname{det} A=2 \times 2 \times 5=20 \neq 0$. Such a matrix could be diagonalizable or not, depending on whether or not there are two independent eigenvectors for the eiegnvalue 2 .

Problem 16

If the only eigenvectors of A are multiples of $(1,4)$, i.e., there is only one independent eigenvector, then A must have a repeated eigenvalue, as eigenvectors corresponding to distinct eigenvalues are independent. This matrix is not diagonalizable, since there aren't enough independent eigenvectors (we needed two of them for this 2 -by- 2 matrix). As for A being invertible or not, it depends on this repeated eigenvalue being zero: $\operatorname{det} A=\lambda^{2}=0$ iff $\lambda=0$.

Problem 8 Monday 4/9
Do problem 22 of section 6.2 in your book.

Solution 8

We begin by computing the eigenvalues of A by solving $\operatorname{det}(A-\lambda I)=0$ for λ :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right]=(2-\lambda)^{2}-1=(1-\lambda)(3-\lambda)
$$

The eigenvalues are $\lambda=1$ and $\lambda=3$. Now, we find the corresponding eigenvectors. For $\lambda=1$, we have $A-I=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, so $N(A-I)$ is generated by the vector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$, which is an eigenvector of A. For $\lambda=3$, we have $A-3 I=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$, so $N(A-3 I)$ is generated by the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, which is another eigenvector of A. The eigenvector matrix is

$$
S=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right],
$$

its inverse is

$$
S^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right],
$$

and the corresponding diagonal matrix is

$$
\Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

We have $A=S \Lambda S^{-1}$, and so $A^{k}=S \Lambda^{k} S^{-1}$:

$$
A^{k}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]^{k} \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1^{k} & 0 \\
0 & 3^{k}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
3^{k}+1 & 3^{k}-1 \\
3^{k}-1 & 3^{k}+1
\end{array}\right]
$$

Problem 9 Monday 4/9
Do problem 28 of section 6.2 in your book.

Solution 9

Let \mathcal{S} be the set of 4 -by- 4 matrices that are diagonalized by the same eigenvector matrix S, i.e., matrices A such that $S^{-1} A S$ is a diagonal matrix. We want to prove that this is a subspace: Suppose $A \in \mathcal{S}$, with $S^{-1} A S=\Lambda$ diagonal matrix, and let c be a scalar. Then,

$$
S^{-1}(c A) S=c S^{-1} A S=c \Lambda
$$

is also a diagonal matrix. Thus, $c A$ is diagonalized by S, and $c A \in \mathcal{S}$.
Suppose $A_{1}, A_{2} \in \mathcal{S}$, with $S^{-1} A_{1} S=\Lambda_{1}$ and $S^{-1} A_{2} S=\Lambda_{2}$ diagonal matrices. Then,

$$
S^{-1}\left(A_{1}+A_{2}\right) S=S^{-1} A_{1} S+S^{-1} A_{2} S=\Lambda_{1}+\Lambda_{2}
$$

is also a diagonal matrix (the sum of two diagonal matrices is diagonal). Thus, $A_{1}+A_{2}$ is diagonalized by S, and $A_{1}+A_{2} \in \mathcal{S}$.
Alternatively, let $v_{1}, v_{2}, \ldots, v_{n}$ be the column vectors of S. Then \mathcal{S} is the set of 4 -by- 4 matrices that have $v_{1}, v_{2}, \ldots, v_{n}$ as eigenvectors. But the eigenvectors of $c A$ are the same as those of A (prove this!), and if A_{1}, A_{2} have the same eigenvectors, then so does $A_{1}+A_{2}$ (prove this!).
In the case that S is the identity matrix, then $S^{-1} A S=I^{-1} A I=A$ must be a diagonal matrix. Thus, \mathcal{S} is the space of 4 -by- 4 diagonal matrices, which has dimension 4 .

Problem 10 Monday 4/9
(a) Give an example of a 3×3 matrix $A \neq 0$ such that $A^{2} \neq 0$ but $A^{3}=0$. Four your A find all the eigenvalues and the eigenvectors.
(b) Now, let B be a diagonalizable matrix such that there exists some positive integer k such that $B^{k}=0$. Prove that $B=0$.
(c) Does part (b) contradict part (a)? Explain your answer.

Solution 10

(a) One such example is $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Then, $A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $A^{3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. To find the eigenvalues we solve $\operatorname{det}(A-\lambda I)=0$ for λ.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right]=-\lambda^{3}
$$

so $\lambda=0$ is the only eigenvalue. There is only one eigenvector, $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, which spans the nullspace of $A-0 I=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(b) Now, let B be a diagonalizable matrix such that $B^{k}=0$ for some k. Since B is diagonalizable, we can write $\Lambda^{k}=S^{-1} B^{k} S=S^{-1} 0 S=0$. But because Λ is a diagonal matrix, this implies that $\Lambda=0$:

$$
\Lambda^{k}=\left[\begin{array}{ccc}
\lambda_{1}^{k} & & \\
& \ddots & \\
& & \lambda_{n}^{k}
\end{array}\right]=0 \Longrightarrow \forall i \lambda_{i}^{k}=0 \Longrightarrow \forall i \lambda_{i}=0 \Longrightarrow \Lambda=0
$$

(c)No, there is no contradiction, because A in (a) was not diagonalizable (not enough independent eigenvectors)!

