
18.06 Problem Set 6 - Solutions
Due Wednesday, April 11, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/4

Do problem 9 of section 6.1 in your book.

Solution 1

( a) Multiply A on the left to both sides of the equation Ax = λx to get AAx = Aλx. But
AAx = A2x and Aλx = λAx = λλx = λ2x, so we have A2x = λ2x, which means that λ2 is an
eigenvalue of A2.
(b)Multiply λ−1A−1 on the left to both sides of the equation Ax = λx to get λ−1A−1Ax =
λ−1A−1λx. But λ−1A−1Ax = λ−1x and λ−1A−1λx = A−1λ−1λx = A−1x, so we have A−1x =
λ−1x, which means that λ−1 is an eigenvalue of A−1.
(c)Add x to both sides of the equation Ax = λx to get Ax + x = λx + x. But this is exactly
(A + I)x = (λ + 1)x, which means that λ + 1 is an eigenvalue of A + I.

Problem 2 Wednesday 4/4

Do problem 28 of section 6.1 in your book.

Solution 2

T he matrix A has rank 1 (all rows are equal), which implies that 0 is an eigenvalue of A (the three
independent vectors in the nullspace of A are the three independent eigenvectors with eigenvalue
0). Now let us find other eigenvalues. If (x, y, z, w)T is an eigenvector with eigenvalue λ 6= 0, then:

A




x
y
z
w


 =




x + y + z + w
x + y + z + w
x + y + z + w
x + y + z + w


 = λ




x
y
z
w




But this implies that x = y = z = w and furthermore λ = 4. Thus, the four eigenvalues of A are
0, 0, 0, 4.
The matrix B has rank 2 (rows 1 and 3 are equal, rows 2 and 4 are equal), which implies that 0
is an eigenvalue of A (the two independent vectors in the nullspace of A are the two independent
eigenvectors with eigenvalue 0). Now let us find other eigenvalues. If (x, y, z, w)T is an eigenvector
with eigenvalue λ 6= 0, then:

A




x
y
z
w


 =




x + z
y + w
x + z
y + w


 = λ




x
y
z
w




But this implies that x = z and y = w, and furthermore λ = 2 (we get two independent eigenvectors
here: (1, 0, 1, 0)T and (0, 1, 0, 1)T ). Thus, the four eigenvalues of A are 0, 0, 2, 2.

Problem 3 Wednesday 4/4

Do problem 33 of section 6.1 in your book.
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Solution 3

( a) Since u, v, w are independent, any vector x can be written as a linear combination of those,
x = c1u + c2v + c3w. Then

Ax = A(c1u + c2v + c3w) = c1Au + c2Av + c3Aw = 3c2v + 5c3w

If Ax = 0, then we must have c2, c3 = 0, so the vectors in the nullspace of A are multiples of u,
and a basis for N(A) is the vector u.
All vectors Ax in the column space of A are linear combinations of v and w: a basis for C(A)
consists of the vectors v and w.
(b) We want to find the solutions of Ax = v + w. Let x = c1u + c2v + c3w. Then as seen above
Ax = 3c2v + 5c3w, so we must have c2 = 1

3 and c3 = 1
5 , while c1 can take any values. The solution

for this is of the form x = c1u + 1
3v + 1

5w.
(c) Ax = u has no solution because if it did then u would be in the column space.

Problem 4 Wednesday 4/4

Let A be a fixed n × n matrix. We would like to find a matrix B such that AB = BA. This is
the same as solving AB −BA = zero matrix. It turns out that this is a system of n2 equations on
the entries of B (which are unknown). Since all these equations are linear, we can associate this
system to a matrix M . Find an eigenvector of this matrix M with its corresponding eigenvalue.

Solution 4

We have Mx = 0 exactly when the vector x corresponds to a matrix B that satisfies AB−BA = 0.
But there is one case of such a matrix that is quite simple: just take B to be the matrix A itself!
Then clearly AA−AA = 0! So if x is the vector corresponding to the matrix A, then Mx = 0, and
this means that x is an eigenvector of M , with eigenvalue 0.

Problem 5 Monday 4/9

Do problem 7 of section 6.2 in your book.

Solution 5

W e begin by computing the eigenvalues of A, solving det(A− λI) = 0 for λ.

det(A− λI) = det
[

4− λ 0
1 2− λ

]
= (4− λ)(2− λ)

The eigenvalues are λ = 2 and λ = 4.
Now, for each eigenvalue λ, we want to find the eigenvectors, i.e., vectors in the nullspace of A−λI.
For λ = 2, we have A − 2I =

[
2 0
1 0

]
, so N(A − 2I) is generated by the vector

[
0
1

]
. Thus, any

vector of the form
[

0
a

]
with a 6= 0 is a suitable eigenvector. For λ = 4, we have A− 4I =

[
0 0
1 −2

]
,

so N(A − 4I) is generated by the vector
[

2
1

]
. Thus, any vector of the form

[
2b
b

]
with b 6= 0 is

a suitable eigenvector. Writing in these vectors as columns of a matrix we get a matrix S that
diagonalizes A:

S =
[

0 2b
a b

]
Λ =

[
2 0
0 4

]

If we switch the columns, we still get a matrix that diagonalizes A:

S =
[

2b 0
b a

]
Λ =

[
4 0
0 2

]
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We know that if x is an eigenvector of A (with eigenvalue λ), then it is also an eigenvector of A−1

(with eigenvalue λ−1), so the same matrices S work for diagonalizing A−1 (the diagonal matrix
changes accordingly).

Problem 6 Monday 4/9

Do problem 10 of section 6.2 in your book.

Solution 6

T he equations Gk+2 = 1
2Gk+1 + 1

2Gk and Gk+1 = Gk+1 can be written in matrix form as
[

Gk+2

Gk+1

]
=

[
1
2

1
2

1 0

][
Gk+1

Gk

]

(a)Firstly, we find the eigenvalues of A =
[

1
2

1
2

1 0

]
by solving det(A− λI) = 0 for λ:

det(A− λI) = det
[

1
2
− λ 1

2
1 −λ

]
= (λ− 1)(λ +

1
2
)

The eigenvalues are λ = 1 and λ = −1
2 .

Now, we find the eigenvectors for each λ. For λ = 1, we have A − I =
[− 1

2
1
2

1 −1

]
, so N(A − I) is

generated by the vector
[

1
1

]
, and this is an eigenvector. For λ = −1

2 , we have A + 1
2I =

[
1 1

2

1 1
2

]
, so

N(A + 1
2I) is generated by the vector

[−1
2

]
, and this is another eigenvector.

(b) The eigenvector matrix is S =
[

1 −1
1 2

]
, its inverse is S−1 = 1

3

[
2 1
−1 1

]
, and the eigenvalue

matrix is Λ =
[

1 0
0 − 1

2

]
. Then An = SΛnS−1. As n →∞,

Λn =
[

1 0
0 − 1

2

]n
=

[
1n 0
0 (− 1

2
)n

]
→

[
1 0
0 0

]

Then,

An = SΛnS−1 →
[

1 −1
1 2

][
1 0
0 0

]1
3

[
2 1
−1 1

]
=

1
3

[
2 1
2 1

]

(c) Applying A repeatedly to
[

G1

G0

]
we get

[
Gn+1

Gn

]
= An

[
G1

G0

]

But An
[

G1

G0

]
→ 1

3

[
2 1
2 1

][
1
0

]
=

[ 2
3
2
3

]
, which implies that

[
Gn+1

Gn

]
→

[ 2
3
2
3

]
, that is, the Gibonacci

numbers Gn approach 2
3 .

Problem 7 Monday 4/9

Do problems 15 and 16 of section 6.2 in your book.

Solution 7

Problem 15
If the eigenvalues of A are 2, 2, 5 then the matrix is certainly invertible, as its determinant is
detA = 2× 2× 5 = 20 6= 0. Such a matrix could be diagonalizable or not, depending on whether
or not there are two independent eigenvectors for the eiegnvalue 2.
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Problem 16
If the only eigenvectors of A are multiples of (1, 4), i.e., there is only one independent eigenvector,
then A must have a repeated eigenvalue, as eigenvectors corresponding to distinct eigenvalues are
independent. This matrix is not diagonalizable, since there aren’t enough independent eigenvectors
(we needed two of them for this 2-by-2 matrix). As for A being invertible or not, it depends on
this repeated eigenvalue being zero: detA = λ2 = 0 iff λ = 0.

Problem 8 Monday 4/9

Do problem 22 of section 6.2 in your book.

Solution 8

We begin by computing the eigenvalues of A by solving det(A− λI) = 0 for λ:

det(A− λI) = det
[

2− λ 1
1 2− λ

]
= (2− λ)2 − 1 = (1− λ)(3− λ)

The eigenvalues are λ = 1 and λ = 3. Now, we find the corresponding eigenvectors. For λ = 1,
we have A− I =

[
1 1
1 1

]
, so N(A− I) is generated by the vector

[
1
−1

]
, which is an eigenvector of

A. For λ = 3, we have A− 3I =
[−1 1

1 −1

]
, so N(A− 3I) is generated by the vector

[
1
1

]
, which is

another eigenvector of A. The eigenvector matrix is

S =
[

1 1
−1 1

]
,

its inverse is
S−1 =

1
2

[
1 −1
1 1

]
,

and the corresponding diagonal matrix is

Λ =
[

1 0
0 3

]
.

We have A = SΛS−1, and so Ak = SΛkS−1:

Ak =
[

1 1
−1 1

][
1 0
0 3

]k 1
2

[
1 −1
1 1

]
=

[
1 1
−1 1

][
1k 0
0 3k

]1
2

[
1 −1
1 1

]
=

1
2

[
3k + 1 3k − 1
3k − 1 3k + 1

]

Problem 9 Monday 4/9

Do problem 28 of section 6.2 in your book.

Solution 9

Let S be the set of 4-by-4 matrices that are diagonalized by the same eigenvector matrix S, i.e.,
matrices A such that S−1AS is a diagonal matrix. We want to prove that this is a subspace:
Suppose A ∈ S, with S−1AS = Λ diagonal matrix, and let c be a scalar. Then,

S−1(cA)S = cS−1AS = cΛ

is also a diagonal matrix. Thus, cA is diagonalized by S, and cA ∈ S.
Suppose A1, A2 ∈ S, with S−1A1S = Λ1 and S−1A2S = Λ2 diagonal matrices. Then,

S−1(A1 + A2)S = S−1A1S + S−1A2S = Λ1 + Λ2
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is also a diagonal matrix (the sum of two diagonal matrices is diagonal). Thus, A1 + A2 is diago-
nalized by S, and A1 + A2 ∈ S.
Alternatively, let v1, v2, . . . , vn be the column vectors of S. Then S is the set of 4-by-4 matrices
that have v1, v2, . . . , vn as eigenvectors. But the eigenvectors of cA are the same as those of A
(prove this!), and if A1, A2 have the same eigenvectors, then so does A1 + A2 (prove this!).
In the case that S is the identity matrix, then S−1AS = I−1AI = A must be a diagonal matrix.
Thus, S is the space of 4-by-4 diagonal matrices, which has dimension 4.

Problem 10 Monday 4/9

(a) Give an example of a 3 × 3 matrix A 6= 0 such that A2 6= 0 but A3 = 0. Four your A find all
the eigenvalues and the eigenvectors.
(b) Now, let B be a diagonalizable matrix such that there exists some positive integer k such that
Bk = 0. Prove that B = 0.
(c) Does part (b) contradict part (a)? Explain your answer.

Solution 10

(a) One such example is A =
[

0 1 0
0 0 1
0 0 0

]
. Then, A2 =

[
0 0 1
0 0 0
0 0 0

]
and A3 =

[
0 0 0
0 0 0
0 0 0

]
. To find the

eigenvalues we solve det(A− λI) = 0 for λ.

det(A− λI) = det
[−λ 1 0

0 −λ 1
0 0 −λ

]
= −λ3

so λ = 0 is the only eigenvalue. There is only one eigenvector,
[

1
0
0

]
, which spans the nullspace of

A− 0I =
[

0 1 0
0 0 1
0 0 0

]
.

(b) Now, let B be a diagonalizable matrix such that Bk = 0 for some k. Since B is diagonalizable,
we can write Λk = S−1BkS = S−10S = 0. But because Λ is a diagonal matrix, this implies that
Λ = 0:

Λk =

[
λk
1

. . .

λk
n

]
= 0 =⇒ ∀iλk

i = 0 =⇒ ∀iλi = 0 =⇒ Λ = 0

(c)No, there is no contradiction, because A in (a) was not diagonalizable (not enough independent
eigenvectors)!
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