18.06 Problem Set 5

Due Wednesday, March 21, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 3/14

Do problem 10 of section 4.3 in your book.

Problem 2 Wednesday 3/14
Do problem 17 of section 4.3 in your book.

Problem 3 Wednesday 3/14
Find a function of the form $f(t)=C \sin (t)+D \cos (t)$ that approximates the three points $(0,0)$, $(\pi / 2,2)$ and $(\pi, 1)$. In other words, find coefficients C and D such that the error $|f(0)-0|^{2}+$ $|f(\pi / 2)-2|^{2}+|f(\pi)-1|^{2}$ is as small as possible.

Problem 4 Wednesday 3/14

The MATLAB command $\mathrm{a}=$ ones $(\mathrm{n}, 1)$ produces and n-by- 1 matrix of ones. The command $\mathrm{r}=(1: \mathrm{n})$ ' gives the vector $(1,2, \ldots, n)$ transposed to a column by '. The command $\mathrm{s}=\mathrm{r} .{ }^{\wedge} 3$ gives the column vector $\left(1^{3}, 2^{3}, \ldots, n^{3}\right)$, because the dots mens "a component at a time."
The purpose of this problem is to find the line $y=c+d t$ closest to the cubic function $y=t^{3}$ on the interval $t=0$ to $t=1$.
(a) Find the best line using calculus, not matLab. Choose c and d to minimize

$$
E(c, d):=\int_{0}^{1}\left(c+d t-t^{3}\right)^{2} d t
$$

(Hint: find $E(c, d)$ in terms of c and d, and use any method learned in 18.02 to minimize this.)
(b) With $n=15$, choose C and D to give the line $y=C+D t$ that is closest to t^{3} at the points $t=\frac{1}{15}, \frac{2}{15} \ldots, 1$. Use MATLAB to do least squares in order to find C and D, and the differences $c-C$ and $d-D$.
(Hint: Set up the equations you want to solve. Your equations (in matrix form) should involve the vectors $a, r / n$ and $s / n^{\wedge} 3$).
(c) Repeat for $n=30$. (Notice how r / n and $\mathrm{s} / \mathrm{n}^{\wedge} 3$ end at 1). Are the differences $c-C$ and $d-D$ smaller for $n=30$? By what factor?

Problem 5 Friday 3/16
Consider in \mathbb{R}^{4} the subspace given by $F=\{(x, y, z, w):-x+y+2 z-w=0\}$.
(a) Give a basis for F.
(b) Use Gram-Schmidt to transform your basis into an orthonormal basis.
(c) What is the distance between the point $(1,3,1,1)$ and (the closest point to) F ?

Problem 6 Friday 3/16
Do problem 6 of section 4.4 in your book.

Problem 7 Friday 3/16
(a) Find a 3 -by- 3 orthogonal matrix A such that
$A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
(b) How many matrices A are there that satisfy these conditions?

Problem 8 Monday 3/19
Do problem 9 of section 5.1 in your book.
In the following problems explain how you calculated the determinants.

Problem 9 Monday 3/19
Calculate the determinant of the matrix

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9
\end{array}\right] .
$$

Problem 10 Monday 3/19
(a) Calculate the determinants of the following "almost upper-triangular" matrices:
$A_{2}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$,
$A_{3}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1\end{array}\right]$,
$A_{4}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$,
$A_{5}=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$.
(b) Can you figure out how to continue the sequence of matrices $A_{2}, A_{3}, A_{4}, A_{5}, \ldots$ and calculate $\operatorname{det}\left(A_{n}\right)$ for any $n ?$

