18.06 Problem Set 5 - Solutions
Due Wednesday, March 21, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 3/14
Do problem 10 of section 4.3 in your book.

Solution 1

$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64\end{array}\right]\left[\begin{array}{l}C \\ D \\ E \\ F\end{array}\right]=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]$
$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 8 \\ 1 & 3 & 9 & 27 & 8 \\ 1 & 4 & 16 & 64 & 20\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 8 \\ 0 & 0 & 6 & 24 & -16 \\ 0 & 0 & 12 & 60 & -12\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 8 \\ 0 & 0 & 6 & 24 & -16 \\ 0 & 0 & 0 & 12 & 20\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 8 \\ 0 & 0 & 6 & 0 & -56 \\ 0 & 0 & 0 & 12 & 20\end{array}\right]$
$F=5 / 3, E=-28 / 3, D=47 / 3, C=0$
This system of linear equations is solvable, so $\mathrm{p}=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]$ and $\mathrm{e}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.

Problem 2 Wednesday 3/14
Do problem 17 of section 4.3 in your book.

Solution 2

$\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right] \begin{gathered}C \\ D\end{gathered}=\left[\begin{array}{c}7 \\ 7 \\ 21\end{array}\right]$
Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]$.
$\hat{x}=\left[\begin{array}{l}C \\ D\end{array}\right]$ for the least square approximation is the one satisfying the following equation.
$A^{T} A\left[\begin{array}{l}C \\ D\end{array}\right]=A^{T}\left[\begin{array}{c}7 \\ 7 \\ 21\end{array}\right] \rightarrow\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right] \rightarrow \hat{x}=\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}9 \\ 4\end{array}\right]$

Problem 3 Wednesday 3/14
Find a function of the form $f(t)=C \sin (t)+D \cos (t)$ that approximates the three points $(0,0)$, $(\pi / 2,2)$, and $(\pi, 1)$. In other words, find coefficients C and D such that the error $|f(0)-0|^{2}+$ $|f(\pi / 2)-2|^{2}+|f(\pi)-1|^{2}$ is as small as possible.

Solution 3

We minimize this expression using least square approximation. The system of equations we would like to solve is:

$$
\begin{aligned}
& 0 \cdot C+1 \cdot D=0 \\
& 1 \cdot C+0 \cdot D=2 \\
& 0 \cdot C-1 \cdot D=1
\end{aligned}
$$

We get these equations by plugging $t=0, \pi / 2, \pi$. In matrix notation this is the same as

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

We multiply by A^{T} and get

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

so we get $C=2$ and $D=-1 / 2$.
We could also solve this problem directly: $|f(0)-0|=D,|f(\pi / 2)-2|=C-2,|f(\pi)-1|=-D-1$ $|f(0)-0|^{2}+|f(\pi / 2)-2|^{2}+|f(\pi)-1|^{2}=D^{2}+(C-2)^{2}+(-D-1)^{2}=2 D^{2}+2 D+1+(C-2)^{2}=$ $2(D+1 / 2)^{2}+(C-2)^{2}+1 / 2$
This is minimum when $\mathrm{C}=2$ and $\mathrm{D}=-1 / 2$

Problem 4 Wednesday 3/14

The MATLAB command $a=o n e s(n, 1)$ produces and n-by- 1 matrix of ones. The command $r=(1: n)$) gives the vector $(1,2, \ldots, n)$ transposed to a column by ${ }^{\prime}$. The command $s=r .{ }^{\wedge} 3$ gives the column vector $\left(1^{3}, 2^{3}, \ldots, n^{3}\right)$, because the dots mens "a component at a time."
The purpose of this problem is to find the line $y=c+d t$ closest to the cubic function $y=t^{3}$ on the interval $t=0$ to $t=1$.
(a) Find the best line using calculus, not MATLAB. Choose c and d to minimize

$$
E(c, d):=\int_{0}^{1}\left(c+d t-t^{3}\right)^{2} d t
$$

(Hint: find $E(c, d)$ in terms of c and d, and use any method learned in 18.02 to minimize this.)
(b) With $n=15$, choose C and D to give the line $y=C+D t$ that is closest to t^{3} at the points $t=\frac{1}{15}, \frac{2}{15} \ldots, 1$. Use matLab to do least squares in order to find C and D, and the differences $c-C$ and $d-D$.
(Hint: Set up the equations you want to solve. Your equations (in matrix form) should involve the vectors $a, r / n$ and $s / n^{\wedge} 3$).
(c) Repeat for $n=30$. (Notice how r / n and $\mathrm{s} / \mathrm{n}^{\wedge} 3$ end at 1). Are the differences $c-C$ and $d-D$ smaller for $n=30$? By what factor?

Solution 4

(a) $E(c, d):=\int_{0}^{1}\left(c+d t-t^{3}\right)^{2} d t=\int_{0}^{1} t^{6}+d^{2} t^{2}+c^{2}+2 c d t-2 c t^{3}-2 d t^{4} d t$
$=\left[\frac{1}{7} t^{7}-\frac{1}{2} c t^{4}-\frac{2}{5} d t^{5}+\frac{1}{3} d^{2} t^{3}+c^{2} t+c d t^{2}\right]_{0}^{1}$
$=\frac{1}{7}-\frac{c}{2}-\frac{2}{5} d+\frac{d^{2}}{3}+c^{2}+c d=(c+d / 2-1 / 4)^{2}+(d-10 / 9)^{2} / 12-1 / 16-100 / 81+1 / 7$
This is minimum when $\mathrm{d}=9 / 10$ and $\mathrm{c}=-1 / 5$.
(b) $\mathrm{D}=1.0018, \mathrm{C}=-0.2498 ; \mathrm{d}-\mathrm{D}=0.1018, \mathrm{c}-\mathrm{C}=0.0498$
(c) $\mathrm{D}=0.9504, \mathrm{C}=-0.2241 ; \mathrm{d}-\mathrm{D}=0.0504, \mathrm{c}-\mathrm{C}=0.0241$

The difference is smaller for $\mathrm{n}=30$ than for $\mathrm{n}=15$ by about factor $1 / 2$.

Problem 5 Friday 3/16
Consider in \mathbb{R}^{4} the subspace given by $F=\{(x, y, z, w):-x+y+2 z-w=0\}$.
(a) Give a basis for F.
(b) Use Gram-Schmidt to transform your basis into an orthonormal basis.
(c) What is the distance between the point $(1,3,1,1)$ and (the closest point to) F ?

Solution 5

(a) $w=-x+y+2 z \rightarrow(x, y, z, w)=(x, y, z,-x+y+2 z)=x(1,0,0,-1)+y(0,1,0,1)+z(0,0,1,2)$ Therefore, basis of $F=\{(1,0,0,-1),(0,1,0,1),(0,0,1,2)\}$
(b) Let $\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$.
$A=a$
$B=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]-\frac{\left[\begin{array}{llll}1 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]}{\left[\begin{array}{llll}1 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 1 \\ 0 \\ 1 / 2\end{array}\right]$
$C=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]-(-2) / 2 *\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]-4 / 6 *\left[\begin{array}{c}1 / 2 \\ 1 \\ 0 \\ 1 / 2\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ -2 / 3 \\ 1 \\ 2 / 3\end{array}\right]$
$\{A, B, C\}$ is orthogonal basis of F
After normalizing, We get orthonomal basis of F ,

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{21}}\left[\begin{array}{c}
2 \\
-2 \\
3 \\
2
\end{array}\right]\right\}
$$

(c) The closet point in F to the point $(1,3,1,1)$ is $Q Q^{T}\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 1\end{array}\right]=\frac{1}{7}\left[\begin{array}{cccc}6 & 1 & 2 & -1 \\ 1 & 6 & -2 & 1 \\ 2 & -2 & 3 & 2 \\ -1 & 1 & 2 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 1\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}10 \\ 18 \\ 1 \\ 10\end{array}\right]$.
Another way of computing the projection given an orthonormal basis, is as the sum of the projections along each basis vector:
$0 * \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]+\frac{8}{\sqrt{6}} * \frac{1}{\sqrt{6}}\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right]+\frac{1}{\sqrt{21}} * \frac{1}{\sqrt{21}}\left[\begin{array}{c}2 \\ -2 \\ 3 \\ 2\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}10 \\ 18 \\ 1 \\ 10\end{array}\right]$.
To compute the distance we compute $d^{2}=(3 / 7)^{2}+(3 / 7)^{2}+(6 / 7)^{2}+(3 / 7)^{2}=9 / 7$, so $d=3 / \sqrt{7}$.

Problem 6 Friday 3/16
Do problem 6 of section 4.4 in your book.

Solution 6

$Q_{1} Q_{2}$ is orthogonal iff $\left(Q_{1} Q_{2}\right)^{T}\left(Q_{1} Q_{2}\right)=I$.
$\left(Q_{1} Q_{2}\right)^{T}\left(Q_{1} Q_{2}\right)=Q_{2}^{T} Q_{1}^{T} Q_{1} Q_{2}=Q_{2}^{T}\left(Q_{1}^{T} Q_{1}\right) Q_{2}=Q_{2}^{T} Q_{2}=I$.
Therefore, $Q_{1} Q_{2}$ is orthogonal.

Problem 7 Friday 3/16
(a)Find a 3 -by- 3 orthogonal matrix A such that
$A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=1 / \sqrt{3} *\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=1 / \sqrt{2} *\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
(b)How many matrices A are there that satisfies this conditions?

Solution 7

$A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=1 / \sqrt{3} *\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \rightarrow$ first column of $A=1 / \sqrt{3} *\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=1 / \sqrt{2} *\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \rightarrow$ second column of $A=1 / \sqrt{2} *\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
Therefore, $\mathrm{A}=\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ x & y & z\end{array}\right]$
A is orthonormal $\rightarrow x^{2}+y^{2}+z^{2}=1,1 / \sqrt{2} *(x-z)=0,1 / \sqrt{3} *(x+y+z)=0$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x \\ -2 x \\ x\end{array}\right]$ and $6 x^{2}=1$
$A=\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{2} \\ 1 / \sqrt{6} & -2 / \sqrt{6} & -1 / \sqrt{6}\end{array}\right]$ or $A=\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ -1 / \sqrt{6} & 2 / \sqrt{6} & -1 / \sqrt{6}\end{array}\right] \ldots(\mathrm{a})$
Therefore, there's two matrices A that satisfies this condition. ...(b)

Problem 8 Monday 3/19
Do the problem 9 of section 5.1 in your book.

Solution 8

$\operatorname{det} A=1 * \operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1$
$\operatorname{det} B=-1 * \operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]+1 * \operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=2$
$\operatorname{det} C=\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$

Problem 9 Monday 3/19
Calculate the determinant of the matrix $A=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9\end{array}\right]$

Solution 9

$\operatorname{det} A=\operatorname{det}\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4\end{array}\right]$, subtracting the first row from all the other rows.
This matrix is clearly singular, thus $\operatorname{det} A=0$.

Problem 10 Monday 3/19
(a)Calculate the determinants of the following "almost upper triangular" matrices.
$A_{2}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
$A_{3}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1\end{array}\right]$
$A_{4}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$
$A_{5}=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$
(b) Can you figure out how to continue the sequence of matrices and calculate $\operatorname{det}\left(A_{n}\right)$ for any n?

Solution 10

(a) $\operatorname{det} A_{2}=2$
$\operatorname{det} A_{3}=\operatorname{det}\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \operatorname{det}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & -1 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & -1 & 1\end{array}\right]=2 * \operatorname{det}\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right]=2 * \operatorname{det} A_{2}=4$
$\operatorname{det} A_{4}=\operatorname{det}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]=2 * \operatorname{det}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]=2 * \operatorname{det} A_{3}=8$
$\operatorname{det} A_{5}=\operatorname{det}\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$
$=2 * \operatorname{det}\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]=2 * \operatorname{det} A_{4}=16$
(b) $\left[A_{n}\right]_{i j}=1$ if $i \leq j,\left[A_{n}\right]_{i j}=-1$ if $i=j+1,\left[A_{n}\right]_{i j}=0$ otherwise.

As above, $\operatorname{det} A_{n}=2 * A_{n-1}=2^{n-1}$

