18.06 Problem Set 4
Due Wednesday, Mar. 14, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 2/28
Do problem 37 of section 3.5 in your book.

Problem 2 Wednesday 2/28
Do problem 28 of section 3.6 in your book (including the challenge problem). For the challenge problem, assume r, n, b, q, k, p are all nonzero.

Problem 3 Wednesday 2/28
Using MATLAB, take several random 4-by-4 matrices (try using the rand $(m, n$) function) and look at their four subspaces. (A convenient way to calculate the subspaces is the fourbase.m teaching code; type in type fourbase at the MATLAB prompt for information on how to use it. ${ }^{1}$) What are the dimensions of the four subspaces for a "typical" 4-by-4 matrix? Can you explain why? (Hint: what are the odds a pivot is exactly zero?)
Now try 4-by-2 matrices. What are the dimensions of the four subspaces now? Now guess what dimensions the four subspaces of a random m-by- n matrix will most likely have.

Problem 4 Wednesday 3/7
Do problems 11 and 12(a) of section 8.2 in your book.

Problem 5 Friday 3/9
Do problem 17 of section 4.1 in your book.

Problem 6 Friday 3/9
Do problem 25 of section 4.1 in your book.

Problem 7 Friday 3/9
Do problem 29 of section 4.1 in your book.

Problem 8 Monday 3/11
Do problem 17 of section 4.2 in your book.

Problem 9 Monday 3/11
Do problem 23 of section 4.2 in your book.

[^0]
Problem 10 Monday 3/11

We found in class an expression for the projection matrix P that projects a vector b onto the column space of a matrix A.
(a) Find a matrix M that projects a vector onto the left nullspace of A.
(b) What is the product $P M$? Explain your answer.

[^0]: ${ }^{1}$ If you need to download the file fourbase.m from the Web site, don't forget to put it in the current directory where MATLAB can find it.

