18.06 Problem Set 3

Due Wednesday, Feb. 28, 2007 at 4:00 p.m. in 2-106
Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Tuesday 2/20
For each of the following questions, please explain your answer.
(a) Let $F=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x \geq y \geq z \geq 0\right\}$. Is F a subspace of \mathbb{R}^{3} ?
(b) The set of all real functions forms a vector space. Is the set of all functions of the form $f(x)=a x^{2}$ (where a can take any real value) a subspace? How about the set of all functions of the form $f(x)=x^{2}+b x+c$ (where b and c can take any real value)?
(c) Let A be a fixed 3×2 matrix. Let F be the set of all 3×3 matrices B such that $B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$. Is F a subspace of the space of all 3×3 matrices?

Problem 2 Tuesday 2/20
Do problem 22 of section 3.1 in your book.

Problem 3 Wednesday 2/21
Do problems 5, 6 and 7 of section 3.2 in your book.

Problem 4 Wednesday 2/21
Do problem 25 of section 3.2 in your book.

Problem 5 Friday 2/23
Do problem 7 of section 3.4 in your book.

Problem 6 Friday 2/23
Do problem 21 of section 3.4 in your book.

Problem 7 Friday 2/23
Let $A=\left[\begin{array}{ccccc}1 & 2 & -2 & 1 & 0 \\ 2 & 4 & -3 & 3 & 0 \\ -3 & -6 & 5 & 4 & 2 \\ 5 & 10 & -9 & 6 & 0\end{array}\right]$.
(a) Transform A to (ordinary) echelon form.
(b) What are the pivots? What are the free variables?
(c) Now transform A to row reduced echelon form.
(d) Give the special solutions. What is the nullspace $N(A)$?
(e) What is the rank of A ?
(f) Give the complete solution to $A x=b$, where $b=A\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]$.

Problem 8 Monday 2/26
Suppose the $m \times n$ matrix R is in row reduced echelon form $\begin{array}{cc}I & F \\ \mathbf{0} & \mathbf{0}\end{array}$, with r nonzero rows and first r columns as pivot columns.
(a) Describe the column space and the nullspace of R.
(b) Do the same for the $m \times 2 n$ matrix $B=\left[\begin{array}{ll}R & R\end{array}\right]$.
(c) Do the same for the $2 m \times n$ matrix $C={ }_{R}^{R}$.
(d) Do the same for the $2 m \times 2 n$ matrix $D=\begin{array}{ll}R & R \\ R & R\end{array}$.

Problem 9 Monday 2/26
Do problem 17 of section 3.3 in your book.

Problem 10 Monday 2/26
Suppose the $m \times n$ matrix $A(m<n)$ has a right inverse B, that is, a matrix B such that $A B=I$, the identity.
(a) What must the dimensions (the height and width) of B and of I be?
(b) Try calculating B in MATLAB: let $A=\left[\begin{array}{ccc}4 & -3 & 1 \\ -2 & 0 & 2\end{array}\right]$ and use $\mathrm{A} \backslash$ I. (This is the code in MATLAB for finding a matrix B such that $A B=I$. The $k \times k$ identity matrix is eye(k) in MATLAB.)
(c) Now try calculating B another way, with $\operatorname{rref}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right)\right.$. (This is the reduced row echelon form, the result of Gauss-Jordan elimination.) What do you get? Use your result to state another, different, B with $A B=I$. Why is B not unique?
(d) Why can't there be a left inverse $C A=I$?

