18.06 Problem Set 3 - Solutions

Due Wednesday, Feb. 28, 2007 at 4:00 p.m. in 2-106
Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Tuesday 2/20
For each of the following questions, please explain your answer.
(a) Let $F=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x \geq y \geq z \geq 0\right\}$. Is F a subspace of \mathbb{R}^{3} ?
(b) The set of all real functions forms a vector space. Is the set of all functions of the form $f(x)=a x^{2}$ (where a can take any real value) a subspace? How about the set of all functions of the form $f(x)=x^{2}+b x+c$ (where b and c can take any real value)?
(c) Let A be a fixed 3×2 matrix. Let F be the set of all 3×3 matrices B such that $B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$. Is F a subspace of the space of all 3×3 matrices?

Solution 1

(a) No, since if we multiply a vector from F by a negative scalar, the result will not anymore be in F.
(b) For $a x^{2}$ the answer is yes, since for any two functions f, g of the given form, $f(x)=a x^{2}$ and $g(x)=b x^{2}$ the sum $(f+g)(x)=(a+b) x^{2}$ and the result of multiplying f by a scalar c $c f(x)=(c a) x^{2}$ are still of the form scalar times x^{2}.
For $x^{2}+b x+c$ the answer is no, since for two functions f, g of the given form, $f(x)=x^{2}+b_{1} x+c_{1}$ and $g(x)=x^{2}+b_{2} x+c_{2}$ the sum $(f+g)(x)=2 x^{2}+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right)$ and here x^{2} has coefficient 2 as opposed to 1 .
(c) Yes, it is a subspace since if $B_{1}, B_{2} \in F$, then we have $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]=B_{1} A+B_{2} A=\left(B_{1}+B_{2}\right) A$ and for any scalar c if $B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ then so is $c B A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$.

Problem 2 Tuesday 2/20
Do problem 22 of section 3.1 in your book.

Solution 2

There are three systems in the problem. We can obviously solve the first system for any $\left(b_{1}, b_{2}, b_{3}\right)$. The second system can be solved provided $b_{3}=0$ since the last equation read $0 x_{1}+0 x_{2}+0 x_{3}=b_{3}$. Finally, in the third system we must have $b_{2}=b_{3}$ since the second and third equations read $x_{3}=b_{2}$ and $x_{3}=b_{3}$.

Problem 3 Wednesday 2/21
Do problems 5, 6 and 7 of section 3.2 in your book.

Solution 3

Problem 5. (a) $A=\left[\begin{array}{ccc}-1 & 3 & 5 \\ -2 & 6 & 10\end{array}\right]$. The corresponding $U=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 0 & 0 & 0\end{array}\right]$.
(b) $B=\left[\begin{array}{ccc}-1 & 3 & 5 \\ -2 & 6 & 7\end{array}\right]$. The corresponding $U=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 0 & 0 & -3\end{array}\right]$ and $L=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$.

Problem 6. The free variables corresponding to A are x_{2} and x_{3}. Therefore, we have two special solutions: $x_{2}=0, x_{3}=1, x_{1}=5$ and $x_{2}=1, x_{3}=0, x_{1}=3$.
There is only one free variable corresponding to B, namely x_{2}. Therefore, we have one special solution: $x_{2}=1, x_{3}=0, x_{1}=3$.
For an m by n matrix the number of pivot variables plus the number of free variables is n, the number of columns.
Problem 7.
$N(A)=\left\{c_{1}\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]: c_{1}, c_{2}\right.$ any scalars $\}=\left\{\left[\begin{array}{c}5 c_{1}+3 c_{2} \\ c_{2} \\ c_{1}\end{array}\right]: c_{1}, c_{2}\right.$ any scalars $\}$
The equation describing $N(A)$ is $x=3 y+5 z$.
$N(B)=\left\{c_{1}\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]: c_{1}\right.$ any scalar $\}=\left\{\left[\begin{array}{c}3 c_{1} \\ c_{1} \\ 0\end{array}\right]: c_{1}\right.$ any scalar $\}$
The equation describing $N(B)$ is $x=3 y$.

Problem 4 Wednesday 2/21
Do problem 25 of section 3.2 in your book.

Solution 4

A possible answer is: $\left[\begin{array}{cccc}0 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1\end{array}\right]$. Since it has 3 pivots we know there is only one free variable, so the nullspace is exactly all the multiples of $(1,1,1,1)$ and nothing more.

Problem 5 Friday 2/23
Do problem 7 of section 3.4 in your book.

Solution 5

We have $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 8 & 2 \\ 2 & 4 & 0\end{array}\right]$ and then if we augment it by the vector $\left(b_{1}, b_{2}, b_{3}\right)$ and do elimination we get the matrix $\left[\begin{array}{cccc}1 & 3 & 1 & b_{1} \\ 0 & -1 & -1 & b_{2}-3 b_{1} \\ 0 & 0 & 0 & b_{3}-2 b_{2}+4 b_{1}\end{array}\right]$. Since the system is then solvable exactly when $b_{3}-2 b_{2}+4 b_{1}=$ 0 this implies that $\left(b_{1}, b_{2}, b_{3}\right)$ is in the column space exactly when $b_{3}-2 b_{2}+4 b_{1}=0$. From this equation we also read of that $r_{3}-2 r_{2}+4 r_{1}=0$, where r_{i} denotes the i-th row.

Problem 6 Friday 2/23
Do problem 21 of section 3.4 in your book.

Solution 6

(a) In the system $x+y+z=4$ the free variables are y and z, therefore the particular solution is $x_{p}=(4,0,0)$ and the two special solutions are $(-1,1,0)$ and $(-1,0,1)$. Thus the complete solution is of the form $\left[\begin{array}{l}4 \\ 0 \\ 0\end{array}\right]+c_{1}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
(b) By Gaussian elimination the system reduces to $x+y+z=4$ and $-2 y=0$ so the free variable is z. The particular solution is then $x_{p}=(4,0,0)$ and the special solution is $x_{n}=(-1,0,1)$ and the complete solution is $\left[\begin{array}{l}4 \\ 0 \\ 0\end{array}\right]+c\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

Problem 7 Friday 2/23
Let $A=\left[\begin{array}{ccccc}1 & 2 & -2 & 1 & 0 \\ 2 & 4 & -3 & 3 & 0 \\ -3 & -6 & 5 & 4 & 2 \\ 5 & 10 & -9 & 6 & 0\end{array}\right]$.
(a) Transform A to (ordinary) echelon form.
(b) What are the pivots? What are the free variables?
(c) Now transform A to row reduced echelon form.
(d) Give the special solutions. What is the nullspace $N(A)$?
(e) What is the rank of A ?
(f) Give the complete solution to $A x=b$, where $b=A\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]$.

Solution 7

(a) The echelon form is $\left[\begin{array}{ccccc}1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 8 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) The pivots are the $(1,1),(2,3)$ and $(3,4)$ entries, and so the pivot variables are x_{1}, x_{3} and x_{4} leaving x_{2}, x_{5} as the free variables.
(c)We get $\left[\begin{array}{llc}1 & 2 & 0,0,-0.75 \\ 0 & 0 & 1,0,-0.25 \\ 0 & 0 & 0,1,0.25 \\ 0 & 0 & 0,0,0\end{array}\right]$.
(d) The special solutions are $\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}0.75 \\ 0 \\ 0.25 \\ -0.25 \\ 1\end{array}\right]$. Thus, the vectors in $N(A)$ are of the form $c_{1}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+$ $c_{2}\left[\begin{array}{c}0.75 \\ 0 \\ 0.25 \\ -0.25 \\ 1\end{array}\right]$ for arbitrary scalars c_{1} and c_{2}.
(e) It is the number of pivots, 3 .
(f) We already have the special solutions, and so we only need to find a particular solution, which we are already given, namely $\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]$. It is important to note that any particular solution works.
We could also get a particular solution by setting the free variables x_{2} and x_{5} to 0 . In this case we can find the particular solution by inspection, since we know that $A\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]=b$ and $A\left[\begin{array}{c}0.75 \\ 0 \\ 0.25 \\ -0.25 \\ 1\end{array}\right]=0$, thus $A\left(\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]-\left[\begin{array}{c}0.75 \\ 0 \\ 0.25 \\ -0.25 \\ 1\end{array}\right]\right)=b$ so a particular solution to the system is $\left[\begin{array}{c}0.25 \\ 0 \\ 0.75 \\ 0.25 \\ 0\end{array}\right]$. Therefore the complete
solution is of the form $\left[\begin{array}{c}0.25 \\ 0 \\ 0.75 \\ 0.25 \\ 0\end{array}\right]+c_{1}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}0.75 \\ 0 \\ 0.25 \\ -0.25 \\ 1\end{array}\right]$.

Problem 8 Monday 2/26
Suppose the $m \times n$ matrix R is in row reduced echelon form $\begin{array}{cc}I & F \\ \mathbf{0} & \mathbf{0}\end{array}$, with r nonzero rows and first r columns as pivot columns.
(a) Describe the column space and the nullspace of R.
(b) Do the same for the $m \times 2 n$ matrix $B=\left[\begin{array}{ll}R & R\end{array}\right]$.
(c) Do the same for the $2 m \times n$ matrix $C=\begin{aligned} & R \\ & R\end{aligned}$.
(d) Do the same for the $2 m \times 2 n$ matrix $D=\begin{array}{ll}R & R \\ R & R\end{array}$.

Solution 8

(a) The column space of R consists of all m-dimensional vectors such that the last $m-r$ coordinates are 0 .
To get the nullspace, notice that there are exactly r pivot variables corresponding to the first r columns, and there are $n-r$ free variables. We must find $n-r$ special solutions by setting all but one of the free variables to 0 and one to 1 . then our nullspace is going to be the span of these special solutions.
(b) Clearly, $C(B)=C(R)$.

The only difference from A for the nullspace of B is that now we have r pivot variables corresponding to the first r columns, and there are $2 n-r$ free variables.
(c) The column space of C consists of all $2 m$-dimensional vectors such that $r+1, r+2, \ldots, m$ th and the last $m-r$ coordinates are 0 .
The nullspace of C is the same as the nullspace of R since we only have the equations repeated here, which does not affect the solutions to the system.
(d) The column space of D consists of all $2 m$-dimensional vectors such that the $r+1, r+2, \ldots, m$ th and the last $m-r$ coordinates are 0 .
The nullspace of C is the same as the nullspace of A since we only have the equations repeated here, which does not affect the solutions to the system.

Problem 9 Monday 2/26
Do problem 17 of section 3.3 in your book.

Solution 9

(a) Call the $i^{t h}$ column of B, B_{i}. Then the problem states that $B_{j}=c_{1} B_{1}+\ldots+c_{j-1} B_{j-1}$. Let the columns of $A B$ be denoted by $(A B)_{i}$. It is clear that $(A B)_{j}=A \cdot B_{j}=A \cdot\left(c_{1} B_{1}+\ldots+c_{j-1} B_{j-1}\right)=$ $c_{1} A \cdot B_{1}+\ldots+c_{j-1} A \cdot B_{j-1}=c_{1}(A B)_{1}+\ldots+c_{j-1}(A B)_{j-1}$ which proves the claim.
(b) Take A_{1} to be the identity matrix and A_{2} to be the all zeros matrix.

Problem 10 Monday 2/26
Suppose the $m \times n$ matrix $A(m<n)$ has a right inverse B, that is, a matrix B such that $A B=I$, the identity.
(a) What must the dimensions (the height and width) of B and of I be?
(b) Try calculating B in MATLAB: let $A=\left[\begin{array}{ccc}4 & -3 & 1 \\ -2 & 0 & 2\end{array}\right]$ and use $A \backslash I$. (This is the code in MATLAB for finding a matrix B such that $A B=I$. The $k \times k$ identity matrix is eye(k) in MATLAB.)
(c) Now try calculating B another way, with $\operatorname{rref}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right]\right.$). (This is the reduced row echelon form, the result of Gauss-Jordan elimination.) What do you get? Use your result to state another, different, B with $A B=I$. Why is B not unique?
(d) Why can't there be a left inverse $C A=I$?

Solution 10

(a) B is n-by-m, and I is m-by-m.
(b) I get $\left[\begin{array}{cc}0.2 & -0.1 \\ 0 & 0 \\ 0.2 & 0.4\end{array}\right]$ for B.
(c) I get $\begin{array}{ccccc}1 & 0 & -1 & 0 & -0.5 \\ 0 & 1 & -1.6667 & -0.3333 & -0.6667\end{array}$ for $\operatorname{rref}\left(\left[\begin{array}{ll}A & I\end{array}\right]\right)$. The last two columns suggest to me that $B=\left[\begin{array}{cc}0 & -0.5 \\ -0.3333 & -0.6667 \\ 0 & 0\end{array}\right]$, and indeed $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
So B is not unique. Let b_{1} and b_{2} be the columns of B. Then looking for B is the same as solving $A b_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $A b_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Since $m<n$ we know then that $r<n$ so there are free variables. This means that if there is a solution, this is not unique (because $N(A)$ is not just 0).
(d) A has rank m (or less), C has rank m (or less), so $C A$ has rank at most m also. So it can't equal I, which has full rank n.
Moral: only square matrices can have both left and right inverses. (And if both inverses exist, they're the same!)

