18.06 Problem Set 2 - Solutions Due Wednesday, Feb. 21, 2007 at **4:00 p.m.** in 2-106

Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Monday 2/12

Use Gauss-Jordan elimination to find the inverse of $A = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 4 & 1 \\ 2 & 10 & 5 \end{bmatrix}$.

Solution 1

 $\begin{bmatrix} 1 & 4 & 2 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 10 & 5 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 2 & 10 & 5 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 2 & 1 & -2 & 0 & 1 \\ 0 & 2 & 1 & -2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & -2 & 0 & 1 \\ 0 & 2 & 1 & -2 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & -1 & 2 & 0 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & -1 & 2 & 0 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 5 & 0 & -2 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 5 & 0 & -2 \\ 0 & 1 & 0 & -3/2 & 1/2 & 1/2 \\ 0 & 0 & 1 & 1 & -1 & 0 \end{bmatrix}$ Therefore, A^{-1} is $\begin{bmatrix} 5 & 0 & -2 \\ -3/2 & 1/2 & 1/2 \\ 1 & -1 & 0 \end{bmatrix}$

Problem 2 Monday 2/12

Do problem 29 of section 2.5 in your book.

Solution 2

- (a) True. This matrix has three pivots maximum.
- (b) False. $\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array}$ is not invertible.
- (c) True. A^{-1} has inverse A.
- (d) True. A^2 has inverse $A^{-1} * A^{-1}$.

Problem 3 Monday 2/12

Do problem 32 of section 2.5 in your book.

Solution 3

(1)	-1	1	-1	1	0	0	0 \
0	1	-1	1	0	1	0	0
0	0	1	-1	0	0	1	0
$\int 0$	0	0	1	0	0	0	1/

 \rightarrow add the second row to the first row \rightarrow

/ 1	L	0	0	0	1	1	0	0 \
)	1	-1	1	0	1	0	0
()	0	1	-1	0	0	1	0
()	0	0	1	0	0	0	1 /

 \rightarrow add the third row to the second row \rightarrow

 $\begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$ $\rightarrow \text{ add the fourth row to the third row} \rightarrow$ $\begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$ Therefore, $A^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
For 5 by 5 alternating matrix, the inverse is $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Problem 4 Wednesday 2/14

Do problem 11 of section 2.6 in your book.

Solution 4

A is already an upper triangular matrix, so for A = LU decomposition, L = I, $U = A = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix}$. For A = LDU decomposition, L = I, $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$, $U = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$.

Problem 5 Wednesday 2/14

Compute the LU decomposition for the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

Solution 5

 \rightarrow substract the first row from the second, third, and fourth row \rightarrow

 \rightarrow substract the second row from the third and fourth row \rightarrow

$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & | & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \text{substract the third row from fourth row} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & -1 & 1 \end{pmatrix}$$

Therefore, NA = U for

$$N = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $A = N^{-1}U$, so

$$L = N^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

gives the LU decomposition of A.

Problem 6 Wednesday 2/14

Do problem 16 of section 2.6 in your book.

Solution 6

Let
$$c = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
.
 $Lc = b \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$
Therefore, $c = \begin{bmatrix} 4 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
Let $x = \begin{bmatrix} y \\ z \\ w \end{bmatrix}$.
 $Lc = b \leftrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$
Therefore, $x = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$
Here, $Ax = LUx = Lc = b$ and $A = LU = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$.

Problem 7 Friday 2/16

Let $P = P_{45}P_{16}P_{56}P_{12}P_{34}$, where the P_{ij} are permutation matrices of order 6.

Solution 7

(a) What is
$$P\begin{bmatrix} 1\\2\\3\\4\\5\\6 \end{bmatrix}$$
?
 $P\begin{bmatrix} 1\\2\\3\\4\\5\\6 \end{bmatrix} = P_{45}P_{16}P_{56}P_{12}P_{34}\begin{bmatrix} 1\\2\\3\\4\\5\\6 \end{bmatrix} = P_{45}P_{16}P_{56}P_{12}\begin{bmatrix} 1\\2\\4\\3\\5\\6 \end{bmatrix} = P_{45}P_{16}P_{56}\begin{bmatrix} 2\\1\\4\\3\\6\\2 \end{bmatrix} = P_{45}P_{16}\begin{bmatrix} 2\\1\\4\\3\\6\\2 \end{bmatrix} = P_{45}\begin{bmatrix} 5\\1\\4\\3\\6\\2 \end{bmatrix} = \begin{bmatrix} 5\\1\\4\\6\\3\\2 \end{bmatrix}$
(b) What is P ?
P is the permutation matrix sending
row $1 \to row 2$
row $2 \to row 6$
row $3 \to row 5$
row $4 \to row 3$
row $5 \to row 1$

row 5 \rightarrow row 1 row 6 \rightarrow row 4 when multiplied on the left. Therefore $P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$

Problem 8 Friday 2/16

Do problem 16 of section 2.7 in your book.

Solution 8

(a)
$$[A^2 + B^2$$
 is symmetric]
 $\leftrightarrow [(A^2 + B^2)^T = A^2 + B^2]$
 $\leftrightarrow [(A^2)^T + (B^2)^T = A^2 + B^2]$
 $\leftrightarrow [(A^T)^2 + (B^T)^2 = A^2 + B^2].$
This is true since $A = A^T$ and $B = B^T$.
(b) $[(A + B)(A - B)$ is symmetric]
 $\leftrightarrow [\{(A + B)(A - B)\}^T = (A + B)(A - B)]$
 $\leftrightarrow [(A - B)^T(A + B)^T = (A + B)(A - B)]$
 $\leftrightarrow [(A^T - B^T)(A^T + B^T) = (A + B)(A - B)]$
 $\leftrightarrow [(A - B)(A + B) = (A + B)(A - B)]$
 $\leftrightarrow [A^2 - BA + AB - B^2 = A^2 + BA - AB - B^2]$
 $\leftrightarrow [AB = BA]$

This is not true since A and B do not generally commute. (c) [ABA is symmetric] $\leftrightarrow [(ABA)^T = ABA]$ $\leftrightarrow [A^TB^TA^T = ABA]$ This is true since $A = A^T$ and $B = B^T$. (c) [ABAB is symmetric] $\leftrightarrow [(ABAB)^T = ABAB]$ $\leftrightarrow [B^TA^TB^TA^T = ABAB]$ $\leftrightarrow [BABA = ABAB]$ This is not true since A and B do not generally commute.

Problem 9 Friday 2/16

Let $A = \begin{bmatrix} 2 & 6 & 5 \\ 3 & 9 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.

Compute an $L\vec{U}$ factorization of A if one exists, or find a permutation matrix P such that PA = LU otherwise.

Solution 9

For
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $PA = \begin{bmatrix} 2 & 6 & 5 \\ 1 & 2 & 3 \\ 3 & 9 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 6 & 5 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 9 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 6 & 5 & 1 & 0 & 0 \\ 0 & -1 & 1/2 & -1/2 & 1 & 0 \\ 0 & 0 & -13/2 & -3/2 & 0 & 1 \end{bmatrix}$
Therefore, for $N = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{bmatrix}$, $NPA = \begin{bmatrix} 2 & 6 & 5 \\ 0 & -1 & 1/2 \\ 0 & 0 & -13/2 \end{bmatrix} = U$.
Therefore, $PA = N^{-1}U = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 5 \\ 0 & -1 & 1/2 \\ 0 & 0 & -13/2 \end{bmatrix}$ is the LU decomposition of PA

Problem 10 Friday 2/16

Are the following statements true or false? For each statement explain why it is true or give a counterexample if it is false. All matrices are assumed to be square.

Solution 10

(a) The product of two upper triangular matrices is an upper triangular matrix. True.

Suppose that A and B is $n \times n$ upper triangular. Then we have $A_{ij} = 0, B_{ij} = 0$ for i > j. $AB_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = \sum_{k=1}^{i} A_{ik} B_{kj} + \sum_{k=i+1}^{n} A_{ik} B_{kj}$

For i > j, the first term is 0 since $A_{ik} = 0$ for i > k, and the second term is 0 since $B_{kj} = 0$ for k > i > j. Therefor $AB_{ij} = 0$ for i > j, which means AB is upper triangular matrix. (b) The product of two symmetric matrices is a symmetric matrix.

False.

Even if $A^T = A$, and $B^T = B (AB)^T = B^T A^T = BA$ is not guaranteed to be equal to AB. (c) The product of two permutation matrices is a permutation matrix. True.

The composition of two permutations is also a permutation.

(d) The inverse of a lower triangular matrix is lower triangular, if it exists . True.

If a lower triangilar matrix L has an inverse, then diagonal entries are all nonzero. Therefore, in the Gauss-Jordan elimination, we can take the k-th row as a k-th pivot to get rid of entries in k-th column. Since 1,2,3... (k-1)th row has entry 0 in k-th column, we only get lower trianular matrices as elimination matrices. ¿From the same reasoning in (a), the product of lower triangular matrices is lower trianular. Therefore, we get lower triangular inverse.