18.06 Problem Set 2 - Solutions

Due Wednesday, Feb. 21, 2007 at 4:00 p.m. in 2-106
Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Monday 2/12
Use Gauss-Jordan elimination to find the inverse of $A=\left[\begin{array}{ccc}1 & 4 & 2 \\ 1 & 4 & 1 \\ 2 & 10 & 5\end{array}\right]$.

Solution 1

$\left[\begin{array}{cccccc}1 & 4 & 2 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 10 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 2 & 10 & 5 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 2 & 1 & -2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & -2 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0\end{array}\right]$
$\rightarrow\left[\begin{array}{cccccc}1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 4 & 0 & -1 & 2 & 0 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & 5 & 0 & -2 \\ 0 & 2 & 0 & -3 & 1 & 1 \\ 0 & 0 & -1 & -1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & 5 & 0 & -2 \\ 0 & 1 & 0 & -3 / 2 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 & 1 & -1 & 0\end{array}\right]$
Therefore, A^{-1} is $\left[\begin{array}{ccc}5 & 0 & -2 \\ -3 / 2 & 1 / 2 & 1 / 2 \\ 1 & -1 & 0\end{array}\right]$

Problem 2 Monday 2/12
Do problem 29 of section 2.5 in your book.

Solution 2

(a) True. This matrix has three pivots maximum.
(b) False. $\begin{array}{lll}1 & 1 \\ 1 & 1\end{array}$ is not invertible.
(c) True. A^{-1} has inverse A.
(d) True. A^{2} has inverse $A^{-1} * A^{-1}$.

Problem 3 Monday 2/12
Do problem 32 of section 2.5 in your book.

Solution 3

$$
\left(\begin{array}{cccc|cccc}
1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

\rightarrow add the second row to the first row \rightarrow

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

\rightarrow add the third row to the second row \rightarrow

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

\rightarrow add the fourth row to the third row \rightarrow

$$
\left(\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Therefore, $A^{-1}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$.
For 5 by 5 alternating matrix, the inverse is $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

Problem 4 Wednesday 2/14
Do problem 11 of section 2.6 in your book.

Solution 4

A is already an upper triangular matrix, so for $A=L U$ decomposition, $L=I, U=A=\left[\begin{array}{lll}2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7\end{array}\right]$.
For $A=L D U$ decomposition, $L=I, D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7\end{array}\right], U=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$.

Problem 5 Wednesday 2/14
Compute the $L U$ decomposition for the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Solution 5

$$
\left(\begin{array}{llll|llll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 2 & 2 & 2 & 0 & 1 & 0 & 0 \\
1 & 2 & 3 & 3 & 0 & 0 & 1 & 0 \\
1 & 2 & 3 & 4 & 0 & 0 & 0 & 1
\end{array}\right)
$$

\rightarrow substract the first row from the second, third, and fourth row \rightarrow

$$
\left(\begin{array}{cccc|cccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & -1 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & -1 & 0 & 1 & 0 \\
0 & 1 & 2 & 3 & -1 & 0 & 0 & 1
\end{array}\right)
$$

\rightarrow substract the second row from the third and fourth row \rightarrow

$$
\left(\begin{array}{cccc|cccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & -1 & 0 & 1
\end{array}\right)
$$

\rightarrow substract the third row from fourth row \rightarrow

$$
\left(\begin{array}{cccc|cccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Therefore, $N A=U$ for

$$
\begin{gathered}
N=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \\
U=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$A=N^{-1} U$, so

$$
\begin{gathered}
L=N^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \\
U=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

gives the $L U$ decomposition of A.

Problem 6 Wednesday 2/14
Do problem 16 of section 2.6 in your book.

Solution 6

Let $c=\left[\begin{array}{l}p \\ q \\ r\end{array}\right]$.
$L c=b \leftrightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}p \\ q \\ r\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right] \leftrightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}p \\ q \\ r\end{array}\right]=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right] \leftrightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}p \\ q \\ r\end{array}\right]=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$
Therefore, $c=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$
Let $x=\left[\begin{array}{l}y \\ z \\ w\end{array}\right]$.
$L c=b \leftrightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}y \\ z \\ w\end{array}\right]=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right] \leftrightarrow\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}y \\ z \\ w\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right] \leftrightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}y \\ z \\ w\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
Therefore, $x=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
Here, $A x=L U x=L c=b$ and $A=L U=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$.

Problem 7 Friday 2/16
Let $P=P_{45} P_{16} P_{56} P_{12} P_{34}$, where the $P_{i j}$ are permutation matrices of order 6 .

Solution 7

(a) What is $P\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right]$?
$P\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right]=P_{45} P_{16} P_{56} P_{12} P_{34}\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right]=P_{45} P_{16} P_{56} P_{12}\left[\begin{array}{c}1 \\ 2 \\ 4 \\ 3 \\ 5 \\ 6\end{array}\right]=P_{45} P_{16} P_{56}\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 3 \\ 5 \\ 6\end{array}\right]$
$=P_{45} P_{16}\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 3 \\ 6 \\ 5\end{array}\right]=P_{45}\left[\begin{array}{l}5 \\ 1 \\ 4 \\ 3 \\ 6 \\ 2\end{array}\right]=\left[\begin{array}{l}5 \\ 1 \\ 4 \\ 6 \\ 3 \\ 2\end{array}\right]$
(b) What is P ?

P is the permutation matrix sending
row $1 \rightarrow$ row 2
row $2 \rightarrow$ row 6
row $3 \rightarrow$ row 5
row $4 \rightarrow$ row 3
row $5 \rightarrow$ row 1
row $6 \rightarrow$ row 4
when multiplied on the left.
Therefore $P=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

Problem 8 Friday 2/16
Do problem 16 of section 2.7 in your book.

Solution 8

(a) $\left[A^{2}+B^{2}\right.$ is symmetric $]$
$\leftrightarrow\left[\left(A^{2}+B^{2}\right)^{T}=A^{2}+B^{2}\right]$
$\leftrightarrow\left[\left(A^{2}\right)^{T}+\left(B^{2}\right)^{T}=A^{2}+B^{2}\right]$
$\leftrightarrow\left[\left(A^{T}\right)^{2}+\left(B^{T}\right)^{2}=A^{2}+B^{2}\right]$.
This is true since $A=A^{T}$ and $B=B^{T}$.
(b) $[(A+B)(A-B)$ is symmetric $]$
$\leftrightarrow\left[\{(A+B)(A-B)\}^{T}=(A+B)(A-B)\right]$
$\leftrightarrow\left[(A-B)^{T}(A+B)^{T}=(A+B)(A-B)\right]$
$\leftrightarrow\left[\left(A^{T}-B^{T}\right)\left(A^{T}+B^{T}\right)=(A+B)(A-B)\right]$
$\leftrightarrow[(A-B)(A+B)=(A+B)(A-B)]$
$\leftrightarrow\left[A^{2}-B A+A B-B^{2}=A^{2}+B A-A B-B^{2}\right]$
$\leftrightarrow[A B=B A]$

This is not true since A and B do not generally commute.
(c) $[A B A$ is symmetric $]$
$\leftrightarrow\left[(A B A)^{T}=A B A\right]$
$\leftrightarrow\left[A^{T} B^{T} A^{T}=A B A\right]$
This is true since $A=A^{T}$ and $B=B^{T}$.
(c) $[A B A B$ is symmetric $]$
$\leftrightarrow\left[(A B A B)^{T}=A B A B\right]$
$\leftrightarrow\left[B^{T} A^{T} B^{T} A^{T}=A B A B\right]$
$\leftrightarrow[B A B A=A B A B]$
This is not true since A and B do not generally commute.

Problem 9 Friday 2/16
Let $A=\left[\begin{array}{lll}2 & 6 & 5 \\ 3 & 9 & 1 \\ 1 & 2 & 3\end{array}\right]$.
Compute an $L U$ factorization of A if one exists, or find a permutation matrix P such that $P A=$ $L U$ otherwise.

Solution 9

For $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], P A=\left[\begin{array}{lll}2 & 6 & 5 \\ 1 & 2 & 3 \\ 3 & 9 & 1\end{array}\right]$
$\left[\begin{array}{llllll}2 & 6 & 5 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 9 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}2 & 6 & 5 & 1 & 0 & 0 \\ 0 & -1 & 1 / 2 & -1 / 2 & 1 & 0 \\ 0 & 0 & -13 / 2 & -3 / 2 & 0 & 1\end{array}\right]$
Therefore, for $N=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 / 2 & 1 & 0 \\ -3 / 2 & 0 & 1\end{array}\right], N P A=\left[\begin{array}{ccc}2 & 6 & 5 \\ 0 & -1 & 1 / 2 \\ 0 & 0 & -13 / 2\end{array}\right]=U$.
Therefore, $P A=N^{-1} U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & 1 & 0 \\ 3 / 2 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 6 & 5 \\ 0 & -1 & 1 / 2 \\ 0 & 0 & -13 / 2\end{array}\right]$ is the LU decomposition of PA.
Problem 10 Friday 2/16
Are the following statements true or false? For each statement explain why it is true or give a counterexample if it is false. All matrices are assumed to be square.

Solution 10

(a) The product of two upper triangular matrices is an upper triangular matrix.

True.
Suppose that A and B is $n \times n$ upper triangular. Then we have $A_{i j}=0, B_{i j}=0$ for $i>j$. $A B_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}=\sum_{k=1}^{i} A_{i k} B_{k j}+\sum_{k=i+1}^{n} A_{i k} B_{k j}$
For $i>j$, the first term is 0 since $A_{i k}=0$ for $i>k$, and the second term is 0 since $B_{k j}=0$ for $k>i>j$. Therefor $A B_{i j}=0$ for $i>j$, which means AB is upper triangular matrix.
(b) The product of two symmetric matrices is a symmetric matrix.

False.
Even if $A^{T}=A$, and $B^{T}=B(A B)^{T}=B^{T} A^{T}=B A$ is not guaranteed to be equal to AB .
(c) The product of two permutation matrices is a permutation matrix.

True.
The composition of two permutations is also a permutation.
(d) The inverse of a lower triangular matrix is lower triangular, if it exists .

True.

If a lower triangilar matrix L has an inverse, then diagonal entries are all nonzero. Therefore, in the Gauss-Jordan elimination, we can take the k -th row as a k -th pivot to get rid of entries in k -th column. Since $1,2,3 \ldots(\mathrm{k}-1)$ th row has entry 0 in k -th column, we only get lower trianular matrices as elimination matrices. ¿From the same reasoning in (a), the product of lower triangular matrices is lower trianular. Therefore, we get lower triangular inverse.

