18.06 Problem Set 10

Due Friday, May 11, 2007 at 1:00 p.m. in 2-106

Problem 1 Wednesday 5/2

Do problem 7 of section 7.1 in your book.

Problem 2 Wednesday 5/2
Do problem 14 of section 7.1 in your book.

Problem 3 Wednesday 5/2
Do problem 15 of section 7.1 in your book.

Problem 4 Wednesday 5/2
Do problem 18 of section 7.1 in your book.

Problem 5 Wednesday 5/7
(a) For those transformations in problem 7 of section 7.1 which are linear, find the matrix that represents them when we take the basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ for the input and the output spaces.
(b) For these transformations, find (if possible) a basis so that the matrix that represents the transformation is diagonal. (Note: we want the same basis for the input and the output).

Problem 6 Wednesday 5/7
Do problem 14 of section 7.2 in your book.

Problem 7 Wednesday 5/7

Consider a linear transformation $T: \mathbb{R}^{3} \rightarrow: \mathbb{R}^{3}$ such that $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]\right)=\left[\begin{array}{c}6 \\ 6 \\ 15\end{array}\right]$.
(a) Write down the matrix A_{T} corresponding to T in the basis $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]$ for both input and output spaces.
(b) Write the matrix M that changes the basis of \mathbb{R}^{3} from the v-basis to the standard basis.
(c) Write down the matrix B_{T} corresponding to T in the standard basis for both input and output spaces.
(d) How are A_{T} and B_{T} related? What are their eigenvalues?

Problem 8 Wednesday 5/7
Do problem 32 of section 7.2 in your book.

