18.06 Problem Set 10 - Solutions Due Friday, May 11, 2007 at **1:00 p.m.** in 2-106

Problem 1 Wednesday 5/2

Do problem 7 of section 7.1 in your book.

Solution 1

(a) T(T(v)) = v, transformation T^2 is linear.

(b) T(T(v)) = T(v + (1, 1)) = v + (2, 2), transformation T^2 is not linear since $T(0) \neq 0$. (c) $T(T((v_1, v_2))) = T((-v_2, v_1)) = (-v_1, -v_2)$, transformation T^2 is linear. (d) $T(T(v)) = T(\frac{v_1+v_2}{2}, \frac{v_1+v_2}{2}) = (\frac{v_1+v_2}{2}, \frac{v_1+v_2}{2})$, transformation T^2 is linear. Note that projecting twice is the same as projecting once, we get $T^2 = T$.

Problem 2 Wednesday 5/2

Do problem 14 of section 7.1 in your book.

Solution 2

(1) Since A is invertible, we can multiply both sides by A^{-1} and we get $M = A^{-1}0 = 0$, so the kernel of T is the zero matrix.

(2) Since A is invertible, given B we can find $M = A^{-1}B$ which will give AM = B. This implies that the range of T is the whole space V of all two by two matrices.

Problem 3 Wednesday 5/2

Do problem 15 of section 7.1 in your book.

Solution 3

To show that I is not in the range of T we need to show that there is no matrix M such that AM = I. If there existed such an M it would be the inverse of A. But A is not invertible so no such M exists.

The matrix $M = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$ is a nonzero matrix, and T(M) = AM = 0.

Problem 4 Wednesday 5/2

Do problem 18 of section 7.1 in your book.

Solution 4

After calculation one obtains that $T(M) = \begin{bmatrix} 0 & m_{12} \\ 0 & 0 \end{bmatrix}$, so, for example, the matrix $M = \begin{bmatrix} 3 & 9 \\ 2 & 1 \end{bmatrix}$ yields $T(M) \neq 0$. From $T(M) = \begin{bmatrix} 0 & m_{12} \\ 0 & 0 \end{bmatrix}$ it is clear that the kernel of T consists of matrices of the form $\begin{bmatrix} m_{11} & 0 \\ m_{21} & m_{22} \end{bmatrix}$, where m_{11}, m_{21}, m_{22} are arbitrary, and the range of T consists of all matrices $\begin{bmatrix} 0 & m_{12} \\ 0 & 0 \end{bmatrix}$, where m_{12} is arbitrary.

Problem 5 Wednesday 5/7

(a) For those transformations in problem 7 of section 7.1 which are linear, find the matrix that represents them when we take the basis $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ for the input and the output spaces.

(b) For these transformations, find (if possible) a basis so that the matrix that represents the transformation is diagonal. (*Note:* we want the same basis for the input and the output).

Solution 5

(a) For (a) the matrix is $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, for (c) the matrix is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, for (d) the matrix is $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$. (b) For part (a) the matrix is already diagonal.

Part (c) there is no basis of \mathbb{R}^2 that makes the matrix diagonal, as in order to do that we would need to be able to diagonalize the matrix with eigenvectors in \mathbb{R}^2 , and the matrix has complex eigenvectors. (Recall that when we change the basis we get a similar matrix).

For (d) we take the basis $w_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $w_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (not that these are the eigenvectors of the projection). Then $T(w_1) = w_1$ and $T(w_2) = 0$ so the matrix of the transformation is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Note that this is exactly what we get when we diagonalize the matrix $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

Problem 6 Wednesday 5/7

Do problem 14 of section 7.2 in your book.

Solution 6

(a) $T(v_1, v_2) = -(v_2, v_1)$ works.

(b) $T(v_1, v_2) = (\frac{v_1 + v_2}{2}, \frac{v_1 + v_2}{2})$ (a projection) works. (c) Suppose there was a transformation T such that $T = T^{-1}$ and $T = T^2$. Then $T = T^2 = T \circ T =$ $T \circ T^{-1}$ and the latter is the identity. Therefore only the identity transformation can satisfy both being its own inverse and equal its square.

Problem 7 Wednesday 5/7

Consider a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right) = \begin{bmatrix}3\\6\\9\end{bmatrix}, T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\2\\6\end{bmatrix}$ and

$$T\left(\begin{bmatrix}2\\2\\5\end{bmatrix}\right) = \begin{bmatrix}6\\6\\15\end{bmatrix}.$$

(a) Write down the matrix A_T corresponding to T in the basis $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}$

for both input and output spaces.

(b) Write the matrix \overline{M} that changes the basis of \mathbb{R}^3 from the v-basis to the standard basis.

(c) Write down the matrix B_T corresponding to T in the standard basis for both input and output spaces.

(d) How are A_T and B_T related? What are their eigenvalues?

Solution 7

(a) The information in the basis vectors v_1, v_2, v_3 says that $T(v_1) = 3v_1, T(v_2) = v_1 + 3v_2$ and $T(v_3) = 3v_3$. So we have $A_T \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, A_T \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}, A_T \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$, from which we get

that $A_T = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. (b) The matrix is $M = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 5 \end{bmatrix}$. (c) Since what is happening here is changing the basis in which we are representing the linear transformation, we have that $B_T = MA_TM^{-1} = \begin{bmatrix} 5 & 1/2 & -1 \\ 4 & 4 & -2 \\ 6 & 3/2 & 0 \end{bmatrix}$. (d) The matrices A_T and B_T are similar, $A_T = M^{-1}B_TM$. Their eigenvalues are 3, 3, 3.

Problem 8 Wednesday 5/7

Do problem 32 of section 7.2 in your book.

Solution 8

Multiplying the given matrices results in the matrix $ST = \begin{bmatrix} \cos 2\alpha \cos 2\theta + \sin 2\alpha \sin 2\theta & \sin 2\alpha \cos 2\theta - \cos 2\alpha \sin 2\theta \\ \cos 2\alpha \sin 2\theta - \sin 2\alpha \cos 2\theta & \sin 2\alpha \sin 2\theta + \cos 2\alpha \cos 2\theta \end{bmatrix} = \begin{bmatrix} \cos 2(\theta - \alpha) & -\sin 2(\theta - \alpha) \\ \sin 2(\theta - \alpha) & \cos 2(\theta - \alpha) \end{bmatrix}, \text{ thus the composition of these two reflections gives a rotation by } 2(\theta - \alpha).$