18.06 Problem Set 10 - Solutions

Due Friday, May 11, 2007 at 1:00 p.m. in 2-106

Problem 1 Wednesday 5/2

Do problem 7 of section 7.1 in your book.

Solution 1

(a) $T(T(v))=v$, transformation T^{2} is linear.
(b) $T(T(v))=T(v+(1,1))=v+(2,2)$, transformation T^{2} is not linear since $T(0) \neq 0$.
(c) $T\left(T\left(\left(v_{1}, v_{2}\right)\right)\right)=T\left(\left(-v_{2}, v_{1}\right)\right)=\left(-v_{1},-v_{2}\right)$, transformation T^{2} is linear.
(d) $T(T(v))=T\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)=\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)$, transformation T^{2} is linear. Note that projecting twice is the same as projecting once, we get $T^{2}=T$.

Problem 2 Wednesday 5/2
Do problem 14 of section 7.1 in your book.

Solution 2

(1) Since A is invertible, we can multiply both sides by A^{-1} and we get $M=A^{-1} 0=0$, so the kernel of T is the zero matrix.
(2) Since A is invertible, given B we can find $M=A^{-1} B$ which will give $A M=B$. This implies that the range of T is the whole space V of all two by two matrices.

Problem 3 Wednesday 5/2

Do problem 15 of section 7.1 in your book.

Solution 3

To show that I is not in the range of T we need to show that there is no matrix M such that $A M=I$. If there existed such an M it would be the inverse of A. But A is not invertible so no such M exists.
The matrix $M=\left[\begin{array}{cc}2 & 2 \\ -1 & -1\end{array}\right]$ is a nonzero matrix, and $T(M)=A M=0$.
Problem 4 Wednesday 5/2
Do problem 18 of section 7.1 in your book.

Solution 4

After calculation one obtains that $T(M)=\left[\begin{array}{cc}0 & m_{12} \\ 0 & 0\end{array}\right]$, so, for example, the matrix $M=\left[\begin{array}{ll}3 & 9 \\ 2 & 1\end{array}\right]$ yields $T(M) \neq 0$.
From $T(M)=\left[\begin{array}{cc}0 & m_{12} \\ 0 & 0\end{array}\right]$ it is clear that the kernel of T consists of matrices of the form $\left[\begin{array}{cc}m_{11} & 0 \\ m_{21} & m_{22}\end{array}\right]$, where m_{11}, m_{21}, m_{22} are arbitrary, and the range of T consists of all matrices $\left[\begin{array}{cc}0 & m_{12} \\ 0 & 0\end{array}\right]$, where m_{12} is arbitrary.

Problem 5 Wednesday 5/7

(a) For those transformations in problem 7 of section 7.1 which are linear, find the matrix that represents them when we take the basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ for the input and the output spaces.
(b) For these transformations, find (if possible) a basis so that the matrix that represents the transformation is diagonal. (Note: we want the same basis for the input and the output).

Solution 5

(a) For (a) the matrix is $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, for (c) the matrix is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, for (d) the matrix is $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$. (b) For part (a) the matrix is already diagonal.

Part (c) there is no basis of \mathbb{R}^{2} that makes the matrix diagonal, as in order to do that we would need to be able to diagonalize the matrix with eigenvectors in \mathbb{R}^{2}, and the matrix has complex eigenvectors. (Recall that when we change the basis we get a similar matrix).
For (d) we take the basis $w_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $w_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ (not that these are the eigenvectors of the projection). Then $T\left(w_{1}\right)=w_{1}$ and $T\left(w_{2}\right)=0$ so the matrix of the transformation is $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
Note that this is exactly what we get when we diagonalize the matrix $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$.

Problem 6 Wednesday 5/7

Do problem 14 of section 7.2 in your book.

Solution 6

(a) $T\left(v_{1}, v_{2}\right)=-\left(v_{2}, v_{1}\right)$ works.
(b) $T\left(v_{1}, v_{2}\right)=\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)$ (a projection) works.
(c) Suppose there was a transformation T such that $T=T^{-1}$ and $T=T^{2}$. Then $T=T^{2}=T \circ T=$ $T \circ T^{-1}$ and the latter is the identity. Therefore only the identity transformation can satisfy both being its own inverse and equal its square.

Problem 7 Wednesday 5/7

Consider a linear transformation $T: \mathbb{R}^{3} \rightarrow: \mathbb{R}^{3}$ such that $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]\right)=\left[\begin{array}{c}6 \\ 6 \\ 15\end{array}\right]$.
(a) Write down the matrix A_{T} corresponding to T in the basis $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]$ for both input and output spaces.
(b) Write the matrix M that changes the basis of \mathbb{R}^{3} from the v-basis to the standard basis.
(c) Write down the matrix B_{T} corresponding to T in the standard basis for both input and output spaces.
(d) How are A_{T} and B_{T} related? What are their eigenvalues?

Solution 7

(a) The information in the basis vectors v_{1}, v_{2}, v_{3} says that $T\left(v_{1}\right)=3 v_{1}, T\left(v_{2}\right)=v_{1}+3 v_{2}$ and $T\left(v_{3}\right)=3 v_{3}$. So we have $A_{T} \cdot\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right], A_{T} \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right], A_{T} \cdot\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$, from which we get
that $A_{T}=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(b) The matrix is $M=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 5\end{array}\right]$.
(c) Since what is happening here is changing the basis in which we are representing the linear transformation, we have that $B_{T}=M A_{T} M^{-1}=\left[\begin{array}{ccc}5 & 1 / 2 & -1 \\ 4 & 4 & -2 \\ 6 & 3 / 2 & 0\end{array}\right]$.
(d) The matrices A_{T} and B_{T} are similar, $A_{T}=M^{-1} B_{T} M$. Their eigenvalues are $3,3,3$.

Problem 8 Wednesday 5/7
Do problem 32 of section 7.2 in your book.

Solution 8

Multiplying the given matrices results in the matrix
$S T=\left[\begin{array}{cc}\cos 2 \alpha \cos 2 \theta+\sin 2 \alpha \sin 2 \theta & \sin 2 \alpha \cos 2 \theta-\cos 2 \alpha \sin 2 \theta \\ \cos 2 \alpha \sin 2 \theta-\sin 2 \alpha \cos 2 \theta & \sin 2 \alpha \sin 2 \theta+\cos 2 \alpha \cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}\cos 2(\theta-\alpha) & -\sin 2(\theta-\alpha) \\ \sin 2(\theta-\alpha) & \cos 2(\theta-\alpha)\end{array}\right]$, thus the composition of these two reflections gives a rotation by $2(\theta-\alpha)$.

