18.06 Problem Set 1

Due Wednesday, Feb. 14, 2007 at 4:00 p.m. in 2-106
Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Wednesday 2/07
Consider the following system of equations:

$$
\begin{aligned}
x+3 y+2 z & =6 \\
2 x+5 y+4 z & =1 \\
3 x+8 y+6 z & =7
\end{aligned}
$$

What do you notice about the equations?
The first two planes intersect in a line. What do you know about that line and the third plane? How many solutions does the system have?

Problem 2 Wednesday 2/07
(a) Find a matrix A such that $A\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{c}6 \\ 10\end{array}\right]$ and $A\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$.
(b) What is $A\left[\begin{array}{l}3 \\ 3\end{array}\right]$?

Problem 3 Wednesday 2/07
Do problem 26 of section 2.1 in your book.

Problem 4 Wednesday 2/07
Let's practice using Matlab to check that in general $A B$ and $B A$ are not equal. (Hint: you can type diary at the beginning of your session to save a transcript.)
Let's start with matices of different sizes. Let $A=$ ones $(3,2)$ and $B=o n e s(2,3)$ (that is, the 3-by-2 and 2-by-3 matrices with all entries equal to 1). Compute $A B$ and $B A$. What are their sizes?
 numbers. Now let the computer pick one: $\mathrm{D}=\mathrm{rand}(3,3)$ gives us a random 3 -by- 3 matrix. What are $C D$ and $D C$? Are they equal?

Problem 5 Friday 2/09
Write examples of systems $A \vec{x}=\vec{b}$ where A is a 3 -by- 3 matrix and:

1. the three planes meet in a common line
2. in the row picture, all three planes are parallel but distinct
3. the intersection of the first two planes does not intersect the third plane
4. \vec{b} is not a linear combination of the columns of A.

5 . in the column picture, \vec{b} is a multiple of the second column of A.

Problem 6 Friday 2/09
Answer the following questions for the systems in problem 5:
(a) How many solutions does each have? Describe the shape (point, line, ...) of each solution set.
(b) Reduce each by elimination (you need not back-substitute) and check your answer.

Problem 7 Friday 2/09
Solve the following system by elimination and back substitution:

$$
\begin{aligned}
2 x+3 y+z & =0 \\
x-2 y-z & =-3 \\
x+y+2 z & =3
\end{aligned}
$$

Write down the elimination matrices E_{21}, E_{31}, E_{32} you used.

Problem 8 Monday 2/12
Consider the matrices $A=\left[\begin{array}{ccc}5 & -3 & -9 \\ 2 & 4 & -1 \\ -1 & 7 & 5\end{array}\right], B=\left[\begin{array}{cc}4 & -1 \\ 0 & 2 \\ -1 & 1\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & 2 \\ 1 & 1 \\ -3 & 3\end{array}\right]$.
(a) Find $A B$ and $A C$.
(b) Do you notice anything special? Why does this tell you A is not invertible?

Problem 9 Monday 2/12
Do problem 13 of section 2.4 in your book.

Problem 10 Monday 2/12
Do problem 7 of section 2.5 in your book.

