18.06 Problem Set 1 Due Wednesday, Feb. 14, 2007 at **4:00 p.m.** in 2-106

Each problem is worth 10 points. The date next to the problem number indicates the lecture in which the material is covered.

Problem 1 Wednesday 2/07

Consider the following system of equations:

What do you notice about the equations?

The first two planes intersect in a line. What do you know about that line and the third plane? How many solutions does the system have?

Problem 2 Wednesday 2/07

(a) Find a matrix A such that $A\begin{bmatrix}2\\0\end{bmatrix} = \begin{bmatrix}6\\10\end{bmatrix}$ and $A\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}-3\\2\end{bmatrix}$. (b) What is $A\begin{bmatrix}3\\3\end{bmatrix}$?

Problem 3 Wednesday 2/07

Do problem 26 of section 2.1 in your book.

Problem 4 Wednesday 2/07

Let's practice using Matlab to check that in general AB and BA are not equal. (Hint: you can type diary at the beginning of your session to save a transcript.)

Let's start with matices of different sizes. Let A=ones(3,2) and B=ones(2,3) (that is, the 3-by-2 and 2-by-3 matrices with all entries equal to 1). Compute AB and BA. What are their sizes?

Now, let's multiply to 3-by-3 matrices. Let C=[a b c; d e f; g h i], where a...i are nine of your favorite numbers. Now let the computer pick one: D=rand(3,3) gives us a random 3-by-3 matrix. What are CD and DC? Are they equal?

Problem 5 Friday 2/09

Write examples of systems $A\vec{x} = \vec{b}$ where A is a 3-by-3 matrix and:

- 1. the three planes meet in a common line
- 2. in the row picture, all three planes are parallel but distinct
- 3. the intersection of the first two planes does not intersect the third plane
- 4. \vec{b} is not a linear combination of the columns of A.
- 5. in the column picture, \vec{b} is a multiple of the second column of A.

Problem 6 Friday 2/09

Answer the following questions for the systems in problem 5:

- (a) How many solutions does each have? Describe the shape (point, line, ...) of each solution set.
- (b) Reduce each by elimination (you need not back-substitute) and check your answer.

Problem 7 Friday 2/09

Solve the following system by elimination and back substitution:

$$2x + 3y + z = 0$$

$$x - 2y - z = -3$$

$$x + y + 2z = 3$$

Write down the elimination matrices E_{21} , E_{31} , E_{32} you used.

Problem 8 Monday 2/12

	5	-3	-9		4	-1]		1	2	
Consider the matrices $A=$	2	4	-1	, $B =$	0	2	and $C =$	1	1	
	-1	$\overline{7}$	5		[-1]	1		-3	3	
(a) E $1 A D = 1 A C$	-		_		-	-		-	-	

(a) Find AB and AC.

(b) Do you notice anything special? Why does this tell you ${\cal A}$ is not invertible?

Problem 9 Monday 2/12

Do problem 13 of section 2.4 in your book.

Problem 10 Monday 2/12

Do problem 7 of section 2.5 in your book.