Please circle your recitation:
(1) M 2 2-131 A. Osorno
(2) M 3 2-131 A. Osorno
(3) M 3 2-132 A. Pissarra Pires
(4) T 11 2-132 K. Meszaros
(5) T 12 2-132 K. Meszaros
(6) T $1 \quad$ 2-132 Jerin Gu
(7) T 2 2-132 Jerin Gu

Grading

1
\longrightarrow
2
-
3
\qquad
4

5

6

7

\qquad
8

Total:

Problem 1 (10 points)

Let $A=\left(\begin{array}{llll}3 & 2 & 1 & 1 \\ 6 & 6 & 3 & 3 \\ 3 & 4 & 2 & 2\end{array}\right)$.
(a) Calculate the dimensions of the 4 fundamental subspaces associated with A.
(b) Give a basis for each of the 4 fundamental subspaces.
(c) Find the complete solution of the system $A \mathbf{x}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$.

Solution 1

(a) The rank is 2 , so the dimensions are:
$C(A) \rightsquigarrow r=2$
$C\left(A^{T}\right) \rightsquigarrow r=2$
$N(A) \rightsquigarrow n-r=4-2=2$
$N\left(A^{T}\right) \rightsquigarrow m-r=3-2=1$.
(b) We can get these by elimination or by inspection:
$C(A) \rightsquigarrow\left(\begin{array}{lll}3 & 6 & 3\end{array}\right)^{T},\left(\begin{array}{lll}2 & 6 & 4\end{array}\right)^{T}$
$C\left(A^{T}\right) \rightsquigarrow\left(\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right)^{T},\left(\begin{array}{llll}6 & 3 & 3 & 1\end{array}\right)^{T}$
$N(A) \rightsquigarrow\left(\begin{array}{llll}0 & -1 / 2 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{llll}0 & -1 / 2 & 0 & 1\end{array}\right)^{T}$
$N\left(A^{T}\right) \rightsquigarrow\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)^{T}$
(c) $x=x_{\text {particular }}+x_{\text {nullspace }}=\left(\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ 0\end{array}\right)+c_{1}\left(\begin{array}{c}0 \\ -1 / 2 \\ 1 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{c}0 \\ -1 / 2 \\ 0 \\ 1\end{array}\right)$.

Problem 2 (10 points)

Consider the system of linear equations:

$$
\left\{\begin{array}{r}
x+y+z=1 \\
2 x+z=2 \\
-x+y+a z=b
\end{array}\right.
$$

In parts (a)-(c) below circle correct answers. Explain your answers.
(a) For $a=1, b=-1$, the system has:
(1) exactly one solution
(2) infinitely many solutions
(3) no solutions
(b) For $a=0, b=1$, the system has:
(1) exactly one solution
(2) infinitely many solutions
(3) no solutions
(c) For $a=0, b=-1$, the system has:
(1) exactly one solution
(2) infinitely many solutions
(3) no solutions
(d) Solve the system for $a=b=1$.

Solution 2

If we eliminate the augmented matrix we get $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & -2 & -1 & 0 \\ 0 & 0 & a & b+1\end{array}\right)$.
(a) Exactly one solution: The matrix is invertible.
(b) No solutions: Get a row of zeroes in the matrix with no zero in the augmented column.
(c) Infinitely many solutions: Get a row of zeroes with a zero in the augmented column.
(d) Using back substitution we get $x=\left(\begin{array}{lll}0 & -1 & 2\end{array}\right)^{T}$.

Problem 3 (10 points)

Let L be the line in \mathbb{R}^{3} spanned by the vector $(1,1,1)^{T}$. Let P be the projection matrix for the projection onto the line L.
(a) What are the eigenvalues of the matrix P ? (Indicate their multiplicities.)
(b) Find an orthonormal basis of the orthogonal complement L^{\perp} to the line L.
(c) Calculate the projection of the vector $(1,2,3)^{T}$ onto the line L.
(d) Calculate the projection of the vector $(1,2,3)^{T}$ onto the orthogonal complement L^{\perp}.

Solution 3

(a) P is a projection matrix onto a subspace of dimension 1 , so the eigenvalues are $1,0,0$.
(b) $\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 \sqrt{2}\end{array}\right),\left(\begin{array}{c}1 / \sqrt{6} \\ -2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right)$.
(c) $p=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$.
(d) The projection onto L^{\perp} is $b-p=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$.

Problem 4 (10 points)
Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1\end{array}\right)$.
In parts (a)-(c) below circle correct answers. Explain your answers.
(a) The matrix A is singular: True False
(b) The matrix $A+2 I$ is singular: True False
(c) The matrix A is positive definite: True False
(d) Find all eigenvalues of A and the corresponding eigenvectors.
(e) Find an orthogonal matrix Q and a diagonal matrix Λ such that $A=Q \Lambda Q^{T}$.
(f) Solve the system of differential equations $\frac{d \mathbf{u}(t)}{d t}=A \mathbf{u}(t), \mathbf{u}(0)=(1,0,0)^{T}$.

Solution 4

(a) $\operatorname{True}\left(\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)^{T}\right.$ is in the nullspace).
(b) True $\left(\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)^{T}\right.$ is in the nullspace).
(c) False The matrix is singular so has 0 as eigenvalue.
(d) A is singular, so 0 is an eigenvalue with eigenvector $\left(\begin{array}{lll}1 & -2 & 1\end{array}\right)^{T}$.
$A+2 I$ is singular, so -2 is an eigenvalue with eigenvector $\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)^{T}$.
We can get the last eigenvalue by looking a the trace: 6. The eigenvector is $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.
(e)

$$
A=\underbrace{\left(\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{62} & 1 / \sqrt{3} \\
-2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right)}_{Q} \underbrace{\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 6
\end{array}\right)}_{\Lambda} \underbrace{\left(\begin{array}{ccc}
1 / \sqrt{6} & -2 / \sqrt{6} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right)}_{Q^{T}} .
$$

(f) $u(t)=e^{A t} u(0)=Q e^{\Lambda t} Q^{T} u(0)=\frac{1}{6}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)+\frac{1}{2} e^{-2 t}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)+\frac{1}{3} e^{6 t}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Problem 5 (10 points)
Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3\end{array}\right)$.
(a) What is the rank of A ?
(b) Calculate the matrix $A^{T} A$. Find all its eigenvalues (with multiplicities).
(c) Calculate the matrix $A A^{T}$. Find all its eigenvalues (with multiplicities).
(d) Find the matrix Σ in the singular value decomposition $A=U \Sigma V^{T}$.

Solution 5

(a) 1
(b) $A^{T} A=\left(\begin{array}{llll}14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14 \\ 14 & 14 & 14 & 14\end{array}\right)$. It was rank 1 so the eigenvalues are $56,0,0,0$.
(c) $A A^{T}=\left(\begin{array}{ccc}4 & 8 & 12 \\ 8 & 16 & 24 \\ 12 & 24 & 36\end{array}\right)$. It was rank 1 so the eigenvalues are $56,0,0$.
(d) $\Sigma=\left(\begin{array}{cccc}\sqrt{56} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.

Problem 6 (10 points)
Let A_{n} be the tridiagonal $n \times n$-matrix with 2 's on the main diagonal, 1 's immediately above the main diagonal, 3's immediately below the main diagonal, and 0's everywhere else:

$$
A_{n}=\left(\begin{array}{cccccc}
2 & 1 & 0 & 0 & \cdots & 0 \\
3 & 2 & 1 & 0 & \ddots & 0 \\
0 & 3 & 2 & 1 & \ddots & 0 \\
0 & 0 & 3 & 2 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2
\end{array}\right)
$$

(a) Express the determinant $\operatorname{det}\left(A_{n}\right)$ in terms of $\operatorname{det}\left(A_{n-1}\right)$ and $\operatorname{det}\left(A_{n-2}\right)$.
(b) Explicitly calculate $\operatorname{det}\left(A_{n}\right)$, for $n=1, \ldots, 6$.

Solution 6

(a) Using cofactors twice we get $\operatorname{det}\left(A_{n}\right)=2 \operatorname{det}\left(A_{n-1}\right)-3 \operatorname{det}\left(A_{n-2}\right)$.
(b) $\operatorname{det}\left(A_{1}\right)=\operatorname{det}[2]=2$.
$\operatorname{det}\left(A_{2}\right)=\operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)=1$.
$\operatorname{det}\left(A_{3}\right)=2 \cdot 1-3 \cdot 2=-4$.
$\operatorname{det}\left(A_{4}\right)=2 \cdot(-4)-3 \cdot 1=-11$.
$\operatorname{det}\left(A_{5}\right)=2 \cdot(-11)-3 \cdot(-4)=-10$.
$\operatorname{det}\left(A_{6}\right)=2 \cdot(-10)-3 \cdot(-11)=13$.

Problem 7 (10 points)
Calculate the determinant of the following 6×6-matrix:

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Solution 7

This determinant could be computed using cofactors or doing row operations to simplify and then cofactors. it could also be computed as follows.
$A=\underbrace{\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)}_{P} \underbrace{\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)}_{B}$.
P is a permutation matrix with determinant -1 .
$B=\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)-I$.
The eigenvalues of the matrix with all 1's are $6,0,0,0,0,0,0$ so the eigenvalues of B are $5,-1,-1,-1,-1,-1$, so the determinant of B is -5 .

Thus the determinant of A is 5 .

Problem 8 (10 points)
(a) Calculate A^{100} for $A=\left(\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right)$.
(b) Calculate B^{100} for $B=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$.
(c) What will happen with the house (shown below) when we apply the linear transformation $T(v)=B v$ for $B=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$? Will it be dilated? Draw the picture of the transformed house.

Solution 8
(a) $A^{2}=\left(\begin{array}{cc}25 & 0 \\ 0 & 25\end{array}\right)$ so $A^{100}=\left(\begin{array}{cc}5^{100} & 0 \\ 0 & 5^{100}\end{array}\right)$.
(b) $B^{4}=\left(\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right)$ so $B^{100}=\left(\begin{array}{cc}(-4)^{25} & 0 \\ 0 & (-4)^{25}\end{array}\right)=\left(\begin{array}{cc}-4^{25} & 0 \\ 0 & -4^{25}\end{array}\right)$.
(c) From part (b) we see that B^{4} is stretching by 4 and rotating by π. Thus B is rotating by $\pi / 4$ and stretching by $\sqrt{2}$.

