Your PRINTED name is: SOLUTIONS

Please circle your recitation:
(1) M 2 2-131 A. Osorno
(2) M 3 2-131 A. Osorno
(3) M 3 2-132 A. Pissarra Pires
(4) T 11 2-132 K. Meszaros
(5) T 12 2-132 K. Meszaros
(6) T $1 \quad$ 2-132 Jerin Gu
(7) T 2 2-132 Jerin Gu

Grading

1
\longrightarrow
2
\square

3

\qquad
4

Total:

Problem 1 (25 points)

(a) Compute the singular value decomposition $A=U \Sigma V^{T}$ for $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 1 \\ 1 & 0\end{array}\right)$.
(b) Find orthonormal bases for all four fundamental subspaces of A.

Solution 1

(a) $A^{T} A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$, with eigenvalues 3 and 1 . Thus $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$.
v_{1} is a normal eigenvector corresponding to 3 , so $v_{1}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$.
v_{2} is a normal eigenvector corresponding to 1 , so $v_{2}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$.
$u_{1}=\frac{1}{\sqrt{3}} A v_{1}=\left(\begin{array}{c}-1 / \sqrt{6} \\ -2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right) ; u_{2}=A v_{2}=\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right)$.
For u_{3} we find a basis for the nullspace of $A^{T}: u_{3}=\left(\begin{array}{c}-1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right)$.
Thus $A=\underbrace{\left(\begin{array}{ccc}-1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\ -2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\ 1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}\end{array}\right)}_{U} \underbrace{\left(\begin{array}{cc}\sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)}_{\Sigma} \underbrace{\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)}_{V^{T}}$.
(b) Rowspace: v_{1} and v_{2}, i.e. $\binom{1 / \sqrt{2}}{-1 / \sqrt{2}},\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$. Nullspace: 0.
Columnspace: u_{1} and u_{2}, i.e. $\left(\begin{array}{c}-1 / \sqrt{6} \\ -2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right),\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right)$. Left nullspace: u_{3}, i.e. $\left(\begin{array}{c}-1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right)$.

Problem 2 (25 points)
(a) Find the eigenvalues of the matrix $A=\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right)$.
(b) Find 3 linearly independent eigenvectors of A.
(c) Write down a diagonal matrix that is similar to A.
(d) Diagonalize the matrix A as $A=Q \Lambda Q^{T}$ with orthogonal matrix Q.

Solution 2

(a) Notice that $A^{T}=A$ and $A^{2}=A^{T} A=9 I$. So if λ is an eigenvalue of $A, \lambda^{2}=9$. Thus $\lambda= \pm 3$.

The trace of A is 3 , so $\lambda_{1}+\lambda_{2}+\lambda_{3}=3$. We get then that $\lambda_{1}=3, \lambda_{2}=3$ and $\lambda_{3}=-3$.
(b) For $\lambda=3$, we need to find vectors in the nullspace of $\left(\begin{array}{ccc}-2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2\end{array}\right):\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
For $\lambda=-3$, we find the nullspace of $\left(\begin{array}{ccc}4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4\end{array}\right):\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$.
(c) $\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3\end{array}\right)$ since A is diagonalizable.
(d) We need to find orthonormal eigenvectors. We can do this by Gram-Schmidt or by inspection.

$$
A=\underbrace{\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right)}_{Q} \underbrace{\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -3
\end{array}\right)}_{\Lambda} \underbrace{\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{6} & 2 / \sqrt{6} & -1 / \sqrt{6} \\
-1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right)}_{Q^{T}} .
$$

Problem 3 (25 points)

Consider the matrix $A=\left(\begin{array}{ccc}a & 2 & 1 \\ 2 & a & 1 \\ 1 & 1 & 2\end{array}\right)$, where a is a real number.
(a) For which values of the parameter a is the matrix A positive definite?
(b) For which values of the parameter a is the matrix $-A$ positive definite?
(c) For which values of the parameter a is the matrix A singular?

Solution 3

(a) We will use the upper left determinants:
$a>0$
$a^{2}-4>0 \Rightarrow a>2$
$2(a+1)(a-2)>0$ which is always true if $a>2$.
So the only condition we have is $a>2$.
(b) Again using upper left determinants:
$-a>0 \Rightarrow a<0$
$a^{2}-4>0 \Rightarrow a<-2$
$-2(a+1)(a-2)>0$ which is never true if $a<-2$.
So $-A$ is never positive definite.
(c) $\operatorname{det}(A)=2(a+1)(a-2)$, so A is singular if $a=-1$ or $a=2$.

Problem 4 (25 points)
(a) Find the steady state for the Markov matrix $A=\left(\begin{array}{ccc}0.2 & 0.4 & 0.3 \\ 0.4 & 0.2 & 0.3 \\ 0.4 & 0.4 & 0.4\end{array}\right)$.
(b) Calculate the limit of $A^{n}\left(\begin{array}{c}0 \\ 20 \\ 0\end{array}\right)$ as $n \rightarrow \infty$.

Solution 4

(a) The steady state is the eigenvector corresponding to the eigenvalue 1. As a convention, we take it so that the sum of the components is 1 .
To find it, we need to look at the nullspace of the matrix $A-I=\left(\begin{array}{ccc}-0.8 & 0.4 & 0.3 \\ 0.4 & -0.8 & 0.3 \\ 0.4 & 0.4 & -0.6\end{array}\right)$.
The steady state is $\left(\begin{array}{l}0.3 \\ 0.3 \\ 0.4\end{array}\right)$.
(b) The limit of $A^{n}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ as $n \rightarrow \infty$ is the steady state, so the limit of $A^{n}\left(\begin{array}{c}0 \\ 20 \\ 0\end{array}\right)$ as $n \rightarrow \infty$
is $20 \cdot\left(\begin{array}{l}0.3 \\ 0.3 \\ 0.4\end{array}\right)=\left(\begin{array}{l}6 \\ 6 \\ 8\end{array}\right)$.

