Your PRINTED name is: SOLUTIONS

Grading

Please circle your recitation:

1

2
-
3
\qquad
4

5

Total:

Problem 1 (20 points)

Are the following sets of vectors in \mathbb{R}^{3} vector subspaces? Explain your answer.
(a) vectors $(x, y, z)^{T}$ such that $2 x-2 y+z=0 \quad$ YES NO

It is given by a linear equation equal to 0 . You can also think about it as the nullspace of the matrix $\left(\begin{array}{lll}2 & -2 & 1\end{array}\right)$.
(b) vectors $(x, y, z)^{T}$ such that $x^{2}-y^{2}+z=0 \quad$ YES NO

The vector $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ is in the set, but if you multiply by $-1,\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ is not.
(c) vectors $(x, y, z)^{T}$ such that $2 x-2 y+z=1 \quad$ YES NO

It is given by a linear equation not set equal to 0 . In particular, it doesn't contain the 0 vector.
(d) vectors $(x, y, z)^{T}$ such that $x=y$ AND $x=2 z \quad \underline{\text { YES }} \quad$ NO

It is the intersection of two planes! We can think about this set as the nullspace of the $\operatorname{matrix}\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -2\end{array}\right)$.
(e) vectors $(x, y, z)^{T}$ such that $x=y$ OR $x=2 z \quad$ YES $\quad \underline{\text { NO }}$

It is the union of two planes! Take for example $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ which is not in the set.

Problem 2 (20 points)

Let A be a 4×3 matrix with linearly independent columns.
(a) What are the dimensions of the four fundamental subspaces $C(A), N(A), C\left(A^{T}\right), N\left(A^{T}\right)$?
(b) Describe explicitly the nullspace $N(A)$ and the row space $C\left(A^{T}\right)$ of A.
(c) Suppose that B is a 4×3 matrix such that the matrices A and B have exactly the same column spaces $C(A)=C(B)$ and the same nullspaces $N(A)=N(B)$.

Are you sure that in this case $A=B$? YES NO
Prove that $A=B$ or give a counterexample where $A \neq B$.

Solution 2

(a) The columns are linearly independent, so the rank of the matrix is 3 . Then $\operatorname{dim} C(A)=3$, $\operatorname{dim} C\left(A^{T}\right)=3, \operatorname{dim} N(A)=0, \operatorname{dim} N\left(A^{T}\right)=3$.
(b) Since $C\left(A^{T}\right)$ is a 3 -dimensional subspace of \mathbb{R}^{3}, it is all of \mathbb{R}^{3}.
(c) The answer is NO, for example $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$.

Problem 3 (20 points)
Consider the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 5 \\
1 & 3 & 5 & 9
\end{array}\right)
$$

(a) What is the rank of A ?
(b) Find a matrix B such that the column space $C(A)$ of A equals the nullspace $N(B)$ of B.
(c) Which of the following vectors belong(s) to the column space $C(A)$:

$$
\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) ?
$$

Solution 3

We will eliminate the augmented matrix

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & b_{1} \\
1 & 2 & 3 & 5 & b_{2} \\
1 & 3 & 5 & 9 & b_{3}
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & b_{1} \\
0 & 1 & 2 & 4 & b_{2}-b_{1} \\
0 & 2 & 4 & 8 & b_{3}-b_{1}
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & b_{1} \\
0 & 1 & 2 & 4 & b_{2}-b_{1} \\
0 & 0 & 0 & 0 & b_{3}-2 b_{2}+b_{1}
\end{array}\right)
$$

(a) The rank is 2 .
(b) We see from the last row of the reduced matrix that the condition for a vector to be in the column space is $b_{1}-2 b-2+b_{3}=0$. Thus $C(A)$ is $N(B)$ for

$$
B=\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right) .
$$

(c) The last two vectors can't belong to the column space because they are in \mathbb{R}^{4}. From the condition mentioned in part (b), we see that $\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)$ is in the column space, but $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ is not.

Problem 4 (20 points)
Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
3 & 4 & k
\end{array}\right)
$$

(a) For which values of k will the system $A \mathbf{x}=(2,3,7)^{T}$ have a unique solution?
(b) For which values of k will it have an infinite number of solutions?
(c) For $k=4$, find the LU-decomposition of A.
(d) For all values of k, find the complete solution to the system $A \mathbf{x}=(2,3,7)^{T}$.
(You might need to consider several cases.)

Solution 4

We will eliminate the augmented matrix:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
1 & 2 & 3 & 3 \\
3 & 4 & k & 7
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 \\
0 & 1 & k-3 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 \\
0 & 0 & k-5 & 0
\end{array}\right)
$$

(a) and (b) We see from this that no matter what k is there is always at least one solution (there is only a potentially 0 row in the eliminated matrix, and we get a 0 in the augmented vector). We could have seen that by inspection from the original matrix, since $\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$.

For $k \neq 5$, the matrix has rank 3 , so there is a unique solution. For $k=5$ the matrix has rank 2 , so there are infinitely many solutions.
(c) $L=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & 1\end{array}\right)$ using the multipliers, and $U=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right)$ from the elimination above.
(d) As noted above, for $k \neq 5$ there is a unique solution, given by $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. We can get this from the eliminated matrix, or as mentioned above, by inspection.

For $k=5,\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ is a particular solution; the general soltuion is given by adding vectors in the nullspace:

$$
\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

Problem 5 (20 points)
Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & -1 & 0 & 0 \\
1 & 2 & 0 & 2 & 2 \\
1 & 2 & -1 & 0 & 0 \\
2 & 4 & 0 & 4 & 4
\end{array}\right)
$$

(a) Find a basis of the column space $C(A)$.
(b) Find a basis of the nullspace $N(A)$.
(c) Find linear conditions on $b_{1}, b_{2}, b_{3}, b_{4}$ that guarantee that the system $A \mathbf{x}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)^{T}$ has a solution.
(d) Find the complete solution for the system $A \mathbf{x}=(0,1,0,2)^{T}$.

Solution 5

You could find the following answers by eliminating, but also, by inspection.
(a) $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ -1 \\ 0\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ -2 \\ 0 \\ 1\end{array}\right)\right\}$
(c) $b_{3}-b_{1}=0$ and $b_{4}-2 b_{2}=0$.
(d) The general solution is:

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-2 \\
0 \\
-2 \\
0 \\
1
\end{array}\right) .
$$

