Your PRINTED name is: SOLUTIONS

]	Pleas	Grading		
(1)	M 2	2-131	A. Osorno	1
(2)	M 3	2-131	A. Osorno	
(3)	M 3	2-132	A. Pissarra Pires	2
(4)	T 11	2-132	K. Meszaros	
(5)	T 12	2-132	K. Meszaros	3
(6)	Τ1	2-132	Jerin Gu	
(7)	Т2	2-132	Jerin Gu	4
				5
				Total:

Problem 1 (20 points)

Are the following sets of vectors in \mathbb{R}^3 vector subspaces? Explain your answer.

(a) vectors
$$(x, y, z)^T$$
 such that $2x - 2y + z = 0$ **YES** NO

It is given by a linear equation equal to 0. You can also think about it as the nullspace of the matrix $\begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$.

(b) vectors $(x, y, z)^T$ such that $x^2 - y^2 + z = 0$ YES <u>NO</u>

The vector
$$\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
 is in the set, but if you multiply by -1 , $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ is not.
(c) vectors $(x, y, z)^T$ such that $2x - 2y + z = 1$ YES NO

It is given by a linear equation <u>not</u> set equal to 0. In particular, it doesn't contain the 0 vector.

(d) vectors
$$(x, y, z)^T$$
 such that $x = y$ AND $x = 2z$ **YES** NO

It is the intersection of two planes! We can think about this set as the nullspace of the matrix $\begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -2 \end{pmatrix}$.

(e) vectors $(x, y, z)^T$ such that x = y OR x = 2z YES <u>NO</u>

It is the union of two planes! Take for example $\begin{pmatrix} 1\\1\\0 \end{pmatrix} + \begin{pmatrix} 2\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\1\\1 \end{pmatrix}$ which is not in the set.

Problem 2 (20 points)

Let A be a 4×3 matrix with linearly independent columns.

(a) What are the dimensions of the four fundamental subspaces C(A), N(A), $C(A^T)$, $N(A^T)$?

(b) Describe explicitly the nullspace N(A) and the row space $C(A^T)$ of A.

(c) Suppose that B is a 4×3 matrix such that the matrices A and B have exactly the same column spaces C(A) = C(B) and the same nullspaces N(A) = N(B).

Are you sure that in this case A = B? YES NO Prove that A = B or give a counterexample where $A \neq B$.

Solution 2

(a) The columns are linearly independent, so the rank of the matrix is 3. Then dimC(A) = 3, $dimC(A^T) = 3$, dimN(A) = 0, $dimN(A^T) = 3$.

(b) Since $C(A^T)$ is a 3-dimensional subspace of \mathbb{R}^3 , it is all of \mathbb{R}^3 .

	(1)	0	0)	and $\begin{pmatrix} 2\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$	(2	0	0
(a) The answer is \mathbf{NO} for example	0	1	0		0	2	0
(c) The answer is INO , for example	0	0	1		0	0	2
	$\left(0 \right)$	0	0)		$\left(0 \right)$	0	0/

Problem 3 (20 points)

Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 \\ 1 & 3 & 5 & 9 \end{pmatrix}$$

(a) What is the rank of A?

(b) Find a matrix B such that the column space C(A) of A equals the nullspace N(B) of B.

(c) Which of the following vectors belong(s) to the column space C(A):

$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} ?$$

Solution 3

We will eliminate the augmented matrix

$$\begin{pmatrix} 1 & 1 & 1 & 1 & b_1 \\ 1 & 2 & 3 & 5 & b_2 \\ 1 & 3 & 5 & 9 & b_3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 1 & b_1 \\ 0 & 1 & 2 & 4 & b_2 - b_1 \\ 0 & 2 & 4 & 8 & b_3 - b_1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 1 & b_1 \\ 0 & 1 & 2 & 4 & b_2 - b_1 \\ 0 & 0 & 0 & 0 & b_3 - 2b_2 + b_1 \end{pmatrix}$$

(a) The rank is 2.

(b) We see from the last row of the reduced matrix that the condition for a vector to be in the column space is $b_1 - 2b - 2 + b_3 = 0$. Thus C(A) is N(B) for

$$B = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}.$$

(c) The last two vectors can't belong to the column space because they are in \mathbb{R}^4 . From the condition mentioned in part (b), we see that $\begin{pmatrix} 2\\0\\-2 \end{pmatrix}$ is in the column space, but $\begin{pmatrix} 1\\-2\\1 \end{pmatrix}$ is not.

Problem 4 (20 points)

Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 4 & k \end{pmatrix}$$

(a) For which values of k will the system $A\mathbf{x} = (2,3,7)^T$ have a unique solution?

(b) For which values of k will it have an infinite number of solutions?

(c) For k = 4, find the LU-decomposition of A.

(d) For all values of k, find the complete solution to the system $A \mathbf{x} = (2, 3, 7)^T$. (You might need to consider several cases.)

Solution 4

We will eliminate the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 3 \\ 3 & 4 & k & 7 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & k - 3 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k - 5 & 0 \end{pmatrix}$$

(a) and (b) We see from this that no matter what k is there is always at least one solution (there is only a potentially 0 row in the eliminated matrix, and we get a 0 in the augmented vector). We could have seen that by inspection from the original matrix, since

$$\begin{pmatrix} 1\\1\\3 \end{pmatrix} + \begin{pmatrix} 1\\2\\4 \end{pmatrix} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}.$$

For $k \neq 5$, the matrix has rank 3, so there is a unique solution. For k = 5 the matrix has rank 2, so there are infinitely many solutions.

(c)
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$
 using the multipliers, and $U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$ from the elimination above.
(d) As noted above, for $k \neq 5$ there is a unique solution, given by $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. We can get this

from the eliminated matrix, or as mentioned above, by inspection.

•

For k = 5, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ is a particular solution; the general solution is given by adding vectors in the nullspace:

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix} + c \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$$

Problem 5 (20 points)

Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 & 0 \\ 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & -1 & 0 & 0 \\ 2 & 4 & 0 & 4 & 4 \end{pmatrix}$$

(a) Find a basis of the column space C(A).

(b) Find a basis of the nullspace N(A).

(c) Find linear conditions on b_1, b_2, b_3, b_4 that guarantee that the system $A \mathbf{x} = (b_1, b_2, b_3, b_4)^T$ has a solution.

(d) Find the complete solution for the system $A \mathbf{x} = (0, 1, 0, 2)^T$.

Solution 5

You could find the following answers by eliminating, but also, by inspection.

(a)
$$\left\{ \begin{pmatrix} 1\\1\\1\\2 \end{pmatrix}, \begin{pmatrix} -1\\0\\-1\\0 \end{pmatrix} \right\}$$

(b) $\left\{ \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\-2\\0\\1 \end{pmatrix} \right\}$

(c) $b_3 - b_1 = 0$ and $b_4 - 2b_2 = 0$.

(d) The general solution is:

$$\begin{pmatrix} 1\\0\\1\\0\\0 \end{pmatrix} + x_2 \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix} + x_4 \begin{pmatrix} -2\\0\\-2\\1\\0 \end{pmatrix} + x_5 \begin{pmatrix} -2\\0\\-2\\0\\1 \end{pmatrix}.$$