18.06 Spring 2006 - Exam 3 Review Problems

SOLUTIONS TO SELECTED PROBLEMS

1. Section 6.1, Problem 4

Answer: A has $\lambda_{1}=-3$ and $\lambda_{2}=2$ (check trace and determinant) with $\mathbf{x}_{1}=(3,-2)$ and $\mathbf{x}_{2}=(1,1) . A^{2}$ has the same eigenvectors as A, with eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=4$.
2. Section 6.1, Problem 5

Answer: A and B both have $\lambda_{1}=1$ and $\lambda_{2}=1 . A+B$ has $\lambda_{1}=1$ and $\lambda_{2}=3$.
Eigenvalues of $A+B$ are not equal to eigenvalues of A plus eigenvalues of B.
3. Section 6.1, Problem 25

Answer: $\lambda=0,0,6$ with eigenvectors $\mathbf{x}_{1}=(0,-2,1), \mathbf{x}_{2}=(1,-2,0)$ and $\mathrm{x}_{3}=(1,2,1)$.
4. Section 6.2, Problem 2

Answer: If $A=S \Lambda S^{-1}$, then $A^{3}=S \Lambda^{3} S^{-1}$ and $A^{-1}=S \Lambda^{-1} S^{-1}$.

5. Section 6.2, Problem 18

Answer: The rank of $A-3 I$ is one, hence A is not diagonalizable (3 is a repeated eigenvalue but has only one associated eigenvector). Change any entry except $a_{12}=1$ to make A diagonalizable.
6. Section 6.3, Problem 6

Answer: $\lambda_{1}=0$ and $\lambda_{2}=2$. Now $v(t)=20+10 e^{2 t} \rightarrow \infty$ as $t \rightarrow \infty$.
7. Section 6.4, Problem 7

Answer:
a) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ has $\lambda=-1,3$.
b) A has a negative pivot because the pivots have the same signs as the λ 's.
c) A can't have two negative eigenvalues because its trace is positive.
8. Section 6.4, Problem 18

Answer: Suppose $A=A^{T}$ and $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=0 \mathbf{y}$. Then \mathbf{y} is in the nullspace and \mathbf{x} is in the column space. Since $A=A^{T}$, the column space equals the row space, hence \mathbf{x} is in the row space of A. The row space and nullspace are orthogonal subspaces, so $\mathbf{y} \perp \mathbf{x}$.

If the second eigenvalue is a nonzero number β, then shift by $\beta:(A-\beta I) \mathbf{x}=$ $(\lambda-\beta) \mathbf{x}$ and $(A-\beta I) \mathbf{y}=\mathbf{0}$ and again $\mathbf{x} \perp \mathbf{y}$.
9. Section 6.4, Problem 22

Answer: If A is skew-symmetric, then $A^{T}=-A$ and $A^{T} A=A A^{T}=-A^{2}$.
Every orthogonal matrix is normal because $A^{T} A=A A^{T}=I$.
$A=\left[\begin{array}{rr}a & 1 \\ -1 & d\end{array}\right]$ is normal if $a=d$.

10. Section 6.5, Problem 1

Answer: A_{4} has two positive eigenvalues because $a=1$ and $\operatorname{det}\left(A_{4}\right)=1$. $\mathbf{x}^{T} A_{1} \mathbf{x}$ is zero for $\mathbf{x}=(1,-1)$ and $\mathbf{x}^{T} A_{1} \mathbf{x}<0$ for $\mathbf{x}=(6,-5)$.
11. Section 6.5, Problem 16

Answer: $\mathbf{x}^{T} A \mathbf{x}$ is not positive when $\mathbf{x}=(0,1,0)$ because of the zero on the diagonal.
12. Section 6.6, Problem 2

Answer: If $C=F^{-1} A F$ and also $C=G^{-1} B G$ then $M=F G^{-1}$ gives $B=M^{-1} A M$. If C is similar to A and also to B then A is similar to B.
13. Section 6.7, Problem 1

Answer: $A^{T} A=\left[\begin{array}{cc}5 & 20 \\ 20 & 80\end{array}\right]$ has $\sigma_{1}^{2}=85, \mathbf{v}_{1}=\left[\begin{array}{c}1 / \sqrt{17} \\ 4 / \sqrt{17}\end{array}\right]$ and $\mathbf{v}_{2}=$ $\left[\begin{array}{c}4 / \sqrt{17} \\ -1 / \sqrt{17}\end{array}\right]$.
14. Section 6.7, Problem 3

Answer: $\mathbf{u}_{1}=\left[\begin{array}{c}1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right]$ for the column space; $\mathbf{v}_{1}=\left[\begin{array}{c}1 / \sqrt{17} \\ 4 / \sqrt{17}\end{array}\right]$ for the row
space; $\mathbf{u}_{2}=\left[\begin{array}{c}2 / \sqrt{5} \\ -1 / \sqrt{5}\end{array}\right]$ for the nullsapce; $\mathbf{v}_{2}=\left[\begin{array}{c}4 / \sqrt{17} \\ -1 / \sqrt{17}\end{array}\right]$ for the left nullspace.
15. Section 6.7, Problem 10

Answer: $A=W \Sigma W^{T}=U \Sigma V^{T}$.
16. Section 6.7, Problem 12

Answer: Since $A=A^{T}$, we have $\sigma_{1}^{2}=\lambda_{1}^{2}$ and $\sigma_{2}^{2}=\lambda_{2}^{2}$. So $\sigma_{1}=3$ and $\sigma_{2}=2$ (singular values are positive). The unit eigenvectors of $A^{T} A=A A^{T}$ are the same as those for $A: \mathbf{u}_{1}=\mathbf{v}_{1}$ and $\mathbf{u}_{2}=-\mathbf{v}_{2}$ (notice the sign change because $\left.\sigma_{2}=-\lambda_{2}\right)$.
17. Section 6.7, Problem 15

Answer:
a) If A changes to $4 A$, multiply Σ by 4 .
b) $A^{T}=V \Sigma^{T} U^{T}$. And if A^{-1} exists, it is square and equal to $\left(V^{T}\right)^{-1} \Sigma^{-1} U^{-1}$.
18. Section 8.3, Problem 1

Answer: $\lambda=1$ and .75 ; steady state eigenvector $\mathbf{x}=(.6, .4)$.
19. Section 8.3, Problem 9

Answer: $\mathbf{u}_{1}=P \mathbf{u}_{0}=(0,0,1,0) ; \mathbf{u}_{2}=P \mathbf{u}_{1}=(0,1,0,0) ; \mathbf{u}_{3}=P \mathbf{u}_{2}=$ $(1,0,0,0) ; \mathbf{u}_{4}=P \mathbf{u}_{3}=\mathbf{u}_{0}$.

The four eigenvalues of P are $1, i,-1,-i$.

