18.06 Spring 2006 - Exam 2 Review Problems

SOLUTIONS TO SELECTED PROBLEMS

1. Section 4.1, Problem 19

Answer: Suppose L is a one-dimensional subspace in \mathbb{R}^3 . It's orthogonal complement \mathbf{L}^{\perp} is the 2-dimensional subspace (a plane) perpendicular to L. The $(\mathbf{L}^{\perp})^{\perp}$ is a 1-dimensional subspace (a line) perpendicular to \mathbf{L}^{\perp} . In fact $(\mathbf{L}^{\perp})^{\perp}$ is the same as L.

2. Section 4.1, Problem 20

Answer: Suppose **V** is the whole space \mathbb{R}^4 . Then \mathbf{V}^{\perp} contains only the vector **the zero vector**. Then $(\mathbf{V}^{\perp})^{\perp}$ is $\mathbf{V} = \mathbb{R}^4$.

3. Section 4.1, Problem 27

Answer: The lines $3x + y = b_1$ and $6x + 2y = b_2$ are **parallel**. They are the same line if $2b_1 = b_2$. In that case (b_1, b_2) is perpendicular to the vector (2, -1). The nullspace of the matrix is the line 3x + y = 0. One particular vector in that nullspace is (-1, 3).

4. Section 4.2, Problem 14

Answer: The projection of \mathbf{b} onto the column space of A is \mathbf{b} itself, but P is not necessarily I.

$$P = \frac{1}{21} \begin{bmatrix} 5 & 8 & -4 \\ 8 & 17 & 2 \\ -4 & 2 & 20 \end{bmatrix} \text{ and } p = (0, 2, 4).$$

5. Section 4.2, Problem 25

Answer: The column space of P will be S (*n*-dimensional). Then r =dimension of the column space= n.

6. Section 4.3, Problem 19

Answer: $\hat{\mathbf{x}} = (0,0)$. If $\mathbf{b} = \mathbf{e}$, then \mathbf{b} is perpendicular to the column space of A. The projection $\mathbf{p} = 0$.

7. Section 4.3, Problem 20

Answer: $\hat{\mathbf{x}} = (9,4)$ and $\mathbf{e} = (0,0)$. The error $\mathbf{e} = (0,0)$ because **b** is in the column space of A.

8. Section 4.4, Problem 4

Answer:

a)
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $QQ^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

b) (1,0) and (0,0) are orthogonal but not independent. c) $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}), (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$

9. Section 4.4, Problem 5

Answer: Two orthogonal vectors are (1, -1, 0) and (1, 1, -1). Orthonormal vectors are $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$ and $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$.

10. Section 5.1, Problem 2

Answer: If A is 3×3 and det(A) = -1, then

 $det(\frac{1}{2}A) = (\frac{1}{2})^{3}det(A) = -\frac{1}{8},$ $det(-A) = (-1)^{3}det(A) = -1,$ $det(A^{2}) = det(A) \cdot det(A) = 1,$ $det(A^{-1}) = 1/det(A) = -1.$

11. Section 5.1, Problem 29

Answer: If A is rectangular (not square), then $\det(A)$, $\det(A^T)$ are not defined.

12. Section 5.3, Problem 15

Answer:

- a) Cofactors C_{21}, C_{31}, C_{32} are all zero.
- b) $C_{12} = C_{21}, C_{31} = C_{13}, C_{32} = C_{23}.$