18.06 Spring 2006 - Exam 1 Review Problems

SOLUTIONS TO SELECTED PROBLEMS

1. Section 2.2, Problem 22

Answer: The solution is $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ instead of $\left[\begin{array}{r}-1 \\ 2 \\ -3 \\ 4\end{array}\right]$.
2. Section 2.5, Problem 10

Answer: $A^{-1}=\left[\begin{array}{llll}0 & 0 & 0 & \frac{1}{5} \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0\end{array}\right], B^{-1}=\left[\begin{array}{rrrr}3 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & -7 & 6\end{array}\right]$ (invert each block).
3. Section 2.6, Problem 11

Answer: $A=\left[\begin{array}{ccc}2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7\end{array}\right]$ has $L=I$ and $D=\left[\begin{array}{lll}2 & & \\ & 3 & \\ & 7\end{array}\right]$;
$A=L U$ has $U=A ; A=L D U$ has $U=D^{-1} A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$
4. Section 2.7, Problem 3

Answer:
a) $\left((A B)^{-1}\right)^{T}=\left(B^{-1} A^{-1}\right)^{T}=\left(A^{-1}\right)^{T}\left(B^{-1}\right)^{T}$
b) If U is upper triangular then $\left(U^{-1}\right)^{T}$ is lower triangular
5. Section 2.7, Problem 15

Answer:
a) If P sends row 1 to row 4 , then P^{T} sends row 4 to row 1 .
b) $P=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
6. Section 3.1, Problem 18

Answer:
a) True
b) True
c) False; $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
A, B are not symmetric but $A+B$ is symmetric.
7. Section 3.1, Problem 29

Answer: If the 9 by 12 system $A \mathbf{x}=\mathbf{b}$ is solvable for every \mathbf{b}, then $\mathbf{C}(A)=\mathbb{R}^{9}$ (every bis in the column space).
8. Section 3.2, Problem 5

Answer:
$A=\left[\begin{array}{rrr}-1 & 3 & 5 \\ -2 & 6 & 10\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{rrr}-1 & 3 & 5 \\ 0 & 0 & 0\end{array}\right]$
$B=\left[\begin{array}{lll}-1 & 3 & 5 \\ -2 & 6 & 7\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{rrr}-1 & 3 & 5 \\ 0 & 0 & -3\end{array}\right]$.
9. Section 3.2, Problem 7

Answer:
a) The nullspace of A is the plane $-x+3 y+5 z=0$; it contains all vectors of the form $(3 y+5 z, y, z)$.
b) The nullsapce of B is the line through $(3,1,0)$.
10. Section 3.3, Problem 9

Answer: If A is an m by n matrix with $r=1$, its columns are multiples of one column and its rows are multiples of one row. The column space is a line in \mathbb{R}^{m}. The nullspace is a plane in \mathbb{R}^{n}. Also the column space of A^{T} is a line in \mathbb{R}^{n}.
11. Section 3.3, Problem 26

Answer:
a) If $c=1$, then $R=\left[\begin{array}{llll}1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ has x_{2}, x_{3}, x_{4} free.

If $c \neq 1, R=\left[\begin{array}{cccc}1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ has x_{3}, x_{4} free.
Special solutions $N=\left[\begin{array}{rrr}-1 & -2 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ for $c=1$ and $N=\left[\begin{array}{rr}-2 & -2 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ for
$c \neq 1$.
b) If $c=1, R=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and x_{1} is free; if $c=2, R=\left[\begin{array}{rr}1 & -2 \\ 0 & 0\end{array}\right]$ and x_{2} is free; $R=I$ if $c \neq 1$, 2. Special solutions $N=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for $c=1 ; N=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ for $c=2$.
12. Section 3.4, Problem 3

Answer: $x_{\text {complete }}=\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right]$.
13. Section 3.4, Problem 32

Answer: $A=L U=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

For $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 6 \\ 5\end{array}\right]$, the solution is $\mathbf{x}=\left[\begin{array}{r}7 \\ -2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{r}-7 \\ 2 \\ 1\end{array}\right]$. For $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$, there is no solution.
14. Section 3.5, Problem 5

Answer:
a) $\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & -1 & -5\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & 0 & -\frac{18}{5}\end{array}\right]$

The matrix is invertible, so the columns are independent.
b) $\left[\begin{array}{rrr}1 & 2 & -3 \\ -3 & 1 & 2 \\ 2 & -3 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 7 & -7 \\ 0 & -7 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 7 & -7 \\ 0 & 0 & 0\end{array}\right]$

The matrix is not invertible $\left((1,1,1)^{T}\right.$ is in the nullspace), so the columns are dependent.
15. Section 3.5, Problem 10

Answer: The plane is the nullspace of $A=\left[\begin{array}{llll}1 & 2 & -3 & -1\end{array}\right]$. There are three free variables so you can find at most three independent vectors in the plane. For example $\left[\begin{array}{l}x \\ y \\ z \\ t\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$
16. Section 3.5, Problem 17

Answer: These bases are not unique
a) $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
b) $\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -1\end{array}\right]$
c) $\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 0 \\ -1\end{array}\right]$
d) Column space: $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$; Nullspace: $\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$

