18.06 Spring 2006 - Exam 1 Review Problems

SOLUTIONS TO SELECTED PROBLEMS

1. Section 2.2, Problem 22
Answer: The solution is
$$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
 instead of $\begin{bmatrix} -1\\2\\-3\\4 \end{bmatrix}$.

2. Section 2.5, Problem 10

Answer:
$$A^{-1} = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{5} \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & -7 & 6 \end{bmatrix}$$
 (invert each block)

block).

3. Section 2.6, Problem 11

Answer:
$$A = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix}$$
 has $L = I$ and $D = \begin{bmatrix} 2 & & \\ & 3 & \\ & & 7 \end{bmatrix}$;
 $A = LU$ has $U = A$; $A = LDU$ has $U = D^{-1}A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$

4. Section 2.7, Problem 3

Answer:

- a) $((AB)^{-1})^T = (B^{-1}A^{-1})^T = (A^{-1})^T (B^{-1})^T$
- b) If U is upper triangular then $(U^{-1})^T$ is **lower** triangular
- 5. Section 2.7, Problem 15

Answer:

a) If P sends row 1 to row 4, then P^T sends row 4 to row 1.

b)
$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

6. Section 3.1, Problem 18

Answer:

- a) True
- b) True

c) False;
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

A, B are not symmetric but A + B is symmetric.

7. Section 3.1, Problem 29

Answer: If the 9 by 12 system $A\mathbf{x} = \mathbf{b}$ is solvable for every \mathbf{b} , then $\mathbf{C}(A) = \mathbb{R}^9$ (every \mathbf{b} is in the column space).

8. Section 3.2, Problem 5

Answer:

$$A = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 0 & 0 & -3 \end{bmatrix}$$

9. Section 3.2, Problem 7

Answer:

a) The nullspace of A is the plane -x + 3y + 5z = 0; it contains all vectors of the form (3y + 5z, y, z).

b) The nullsapce of B is the line through (3, 1, 0).

10. Section 3.3, Problem 9

Answer: If A is an m by n matrix with r = 1, its columns are multiples of one column and its rows are multiples of one row. The column space is a line in \mathbb{R}^m . The nullspace is a **plane** in \mathbb{R}^n . Also the column space of A^T is a **line** in \mathbb{R}^n .

11. Section 3.3, Problem 26

Answer:

a) If
$$c = 1$$
, then $R = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ has x_2, x_3, x_4 free.

$$If \ c \neq 1, \ R = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 has x_3, x_4 free.
Special solutions $N = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ for $c = 1$ and $N = \begin{bmatrix} -2 & -2 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ for $c \neq 1$.
b) If $c = 1, \ R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and x_1 is free; if $c = 2, \ R = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$ and x_2 is free; $R = I$ if $c \neq 1, 2$. Special solutions $N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for $c = 1; \ N = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ for $c = 2$.

12. Section 3.4, Problem 3

Answer:
$$x_{complete} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}.$$

13. Section 3.4, Problem 32

Answer:
$$A = LU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

For
$$\mathbf{b} = \begin{bmatrix} 1\\3\\6\\5 \end{bmatrix}$$
, the solution is $\mathbf{x} = \begin{bmatrix} 7\\-2\\0 \end{bmatrix} + x_3 \begin{bmatrix} -7\\2\\1 \end{bmatrix}$. For $\mathbf{b} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, there is no solution.

14. Section 3.5, Problem 5

Answer:

a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
 \rightarrow $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & -1 & -5 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & 0 & -\frac{18}{5} \end{bmatrix}$

The matrix is invertible, so the columns are independent.

b)
$$\begin{bmatrix} 1 & 2 & -3 \\ -3 & 1 & 2 \\ 2 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 \\ 0 & 7 & -7 \\ 0 & -7 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 7 & -7 \\ 0 & 0 & 0 \end{bmatrix}$$

The matrix is **not** invertible $((1, 1, 1)^T$ is in the nullspace), so the columns are dependent.

15. Section 3.5, Problem 10

Answer: The plane is the nullspace of $A = \begin{bmatrix} 1 & 2 & -3 & -1 \end{bmatrix}$. There are three free variables so you can find at most three independent vectors in the plane. For example $\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ 16. Section 3.5, Problem 17

Answer: These bases are not unique

$$a) \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$b) \begin{bmatrix} 1\\-1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$$

$$c) \begin{bmatrix} 1\\-1\\-1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\-1\\0\\-1 \end{bmatrix}$$

$$d) Column space: \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}; Nullspace: \begin{bmatrix} -1\\0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1\\0\\1 \end{bmatrix}$$