18.06 Spring 2006 - Problem Set 9

SOLUTIONS TO SELECTED PROBLEMS

1. Section 6.6, Problem 4

Answer: A has no repeated eigenvalues so it can be diagonalized: $A=S \Lambda S^{-1}$ makes it similar to Λ.
2. Section 6.6, Problem 5

Answer:
$\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ are similar;
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ by itself and $\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$ by itself.
3. Section 6.6, Problem 12

Answer: If $M^{-1} J M=K$ then
$J M=\left[\begin{array}{cccc}m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & 0 & 0 & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0\end{array}\right]=M K=\left[\begin{array}{cccc}0 & m_{12} & m_{13} & 0 \\ 0 & m_{22} & m_{23} & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0\end{array}\right]$.

That means $m_{21}=m_{22}=m_{23}=m_{24}=0$ and M is not invertible.
4. Section 6.6, Problem 20

Answer:
a) If A is similar to B then A^{2} is similar to B^{2} because $A=M^{-1} B M \Rightarrow$ $A^{2}=\left(M^{-1} B M\right)\left(M^{-1} B M\right)=M^{-1} B^{2} M$.
b) A^{2} and B^{2} can be similar when A and B are not similar:
A is the 2×2 zero matrix, $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] . A^{2}=B^{2}=$ zero matrix but A and B are not similar because B has only one eigenvector.
c) $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ is similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ because
$\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ is diagonalizable to $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ since $\lambda_{1} \neq \lambda_{2}$.
d) $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ is not similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ because
$\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ has only one eigenvector, so not diagonalizable.
e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 , the eigenvalues stay the same:

Let P be the permutation matrix that exchanges the first two rows. Then $P A P^{T}$ is similar to $A .\left(P A P^{T}\right.$ is the result of exchanging the rows and then the columns of A.)
5. Section 6.7, Problem 1

Answer:
$A^{T} A=\left[\begin{array}{cc}5 & 20 \\ 20 & 80\end{array}\right]$ has $\sigma_{1}^{2}=85, \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 / \sqrt{17} \\ 4 / \sqrt{17}\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}4 / \sqrt{17} \\ -1 / \sqrt{17}\end{array}\right]$.
6. Section 6.7, Problem 7

Answer:
$A A^{T}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\mathbf{u}_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $\sigma_{2}^{2}=1$ with $\mathbf{u}_{2}=$
$\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$.
$A^{T} A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right] ; \sigma_{2}^{2}=1$ with $\mathbf{v}_{\mathbf{2}}=$
$\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$.
Then $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{ll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}}\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}\end{array}\right]^{T}$.
7. Section 6.7, Problem 9

Answer: $A=12 \mathbf{u v}^{T}$. Its only singular value is $\sigma_{1}=12$.
8. Section 6.7, Problem 13

Answer: Suppose $A=Q R$ and the SVD of R is $R=U \Sigma V^{T}$. Then multiply by Q. So the SVD of A is $(Q U) \Sigma V^{T}$.

