18.06 Spring 2006 - Problem Set 8

SOLUTIONS TO SELECTED PROBLEMS

1. Section 6.3, Problem 3

Answer:
$\left[\begin{array}{l}y^{\prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]$. Then $\lambda=\frac{1}{2}(5 \pm \sqrt{41})$.
2. Section 6.3, Problem 23

Answer: $A^{2}=A$ so $A^{3}=A$.
$e^{A t}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}t & 3 t \\ 0 & 0\end{array}\right]+\left[\begin{array}{cc}t^{2} & 3 t^{2} \\ 0 & 0\end{array}\right]+\ldots=\left[\begin{array}{cc}e^{t} & 3\left(e^{t}-1\right) \\ 0 & 1\end{array}\right]$
3. Section 6.4, Problem 4

Answer: $\lambda=10,-5$ with eigenvectors $(1,2)$ and $(2,-1)$.
$Q=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$.
4. Section 6.4, Problem 6

Answer: $\lambda=0,25$ with eigenvectors (.8, -.6) and (.6,.8).
$Q=\left[\begin{array}{rr}.8 & .6 \\ -.6 & .8\end{array}\right]$ or $\left[\begin{array}{rr}-.8 & .6 \\ .6 & .8\end{array}\right]$ or exchange columns.
5. Section 6.5, Problem 7

Answer:
$A^{T} A=\left[\begin{array}{cc}1 & 2 \\ 2 & 13\end{array}\right]$ and $A^{T} A=\left[\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right]$ are positive definite;
$A^{T} A=\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5\end{array}\right]$ is singular so not positive definite.
6. Section 6.5, Problem 15

Answer: If A and B are positive definite, then $A+B$ is positive definite: Since $\mathbf{x}^{\mathbf{T}} A \mathbf{x}>0$ and $\mathbf{x}^{T} B \mathbf{x}>0$ we have $\mathbf{x}^{T}(A+B) \mathbf{x}=\mathbf{x}^{\mathbf{T}} A \mathbf{x}+\mathbf{x}^{\mathbf{T}} B \mathbf{x}>0$ for all $\mathbf{x} \neq 0$. So $A+B$ is positive definite.
7. Section 6.5, Problem 20

Answer:
a) Every positive definite matrix is invertible because the determinant is positive (non-zero).
b) The only positive definite projection matrix is $P=I$ because all projection matrices besides I are singular.
c) A diagonal matrix with positive diagonal entries is positive definite because its eigenvalues are the diagonal entries and they're all positive.
d) $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ is a symmetric matrix with positve determinant that is not positive definite
8. Section 6.5, Problem 28

Answer:
a) $\operatorname{det}(A)=10$;
b) eigenvalues of A are 2 and 5;
c) eigenvectors are $(\cos \theta, \sin \theta)$ and $(-\sin \theta, \cos \theta)$;
d) A is symmetric positive definite because all eigenvalues are positive.

