18.06 Spring 2006 - Problem Set 7

SOLUTIONS TO SELECTED PROBLEMS

1. Section 6.1, Problem 2

Answer: A has $\lambda_{1}=-1$ and $\lambda_{2}=5$ with eigenvectors $\mathbf{x}_{1}=(-2,1)$ and $\mathbf{x}_{\mathbf{2}}=(1,1)$. The matrix $A+I$ has the same eigenvectors with eigenvalues increased by 1: $\lambda_{1}=0$ and $\lambda_{2}=6$.
2. Section 6.1, Problem 12

Answer: P has $\lambda=1,0,1$ with eigenvectors $(1,2,0),(2,-1,0),(0,0,1) . P^{100}=$ P so P^{100} has the same eigenvalues and eigenvectors.

An eigenvector with no zero components is $(1,2,0)+(0,0,1)=(1,2,1)$ which has $\lambda=1$.
3. Section 6.1, Problem 22

Answer: A and A^{T} have the same eigenvalues because $\operatorname{det}(A-\lambda I)=\operatorname{det}(A-$ $\lambda I)^{T}=\operatorname{det}\left(A^{T}-(\lambda I)^{T}\right)=\operatorname{det}\left(A^{T}-\lambda I\right)$.
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $A^{T}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ have different eigenvectors.
4. Section 6.1, Problem 28

Answer: $\operatorname{rank}(A)=1$, with $\lambda=0,0,0,4 \operatorname{rank}(C)=2$, with $\lambda=0,0,2,2$.
5. Section 6.2, Problem 3

Answer:
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$.
6. Section 6.2, Problem 15

Answer: (No explanation necessary.)
a) True; all eigenvalues are non-zero.
b) False; may have 2 or 3 independent eigenvectors.
c) False; may have 2 or 3 independent eigenvectors.
7. Section 6.2, Problem 22

Answer:
$A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$.
$A^{k}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3^{k} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}3^{k}+1 & 3^{k}-1 \\ 3^{k}-1 & 3^{k}+1\end{array}\right]$.
8. Section 6.2, Problem 29

Answer: If A has columns $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$, then $A^{2}=A$ means that $A \mathbf{x}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}$ for every $\mathbf{x}_{\mathbf{i}}$. All vectors in the column space are eigenvectors with $\lambda=1$.

Always the nullspace has $\lambda=0$.
9. Section 8.3, Problem 12

Answer: . $2, .3, .5$ as the last row makes A Markov and symmetric. When A is Markov and symmetric, each row adds to 1 so $(1,1,1,1)$ is an eigenvector of A.
10. Section 10.2, Problem 2

Answer:
$A^{H} A=\left[\begin{array}{ccc}2 & 0 & 1+i \\ 0 & 2 & 1+i \\ 1-i & 1-i & 2\end{array}\right]$ and $A^{H} A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ are both Hermitian
matrices.

11. Section 10.2, Problem 8

Answer: P is orthogonal, invertible, unitary and factorizable into $Q R$.

