18.06 Spring 2006 - Problem Set 6

SOLUTIONS TO SELECTED PROBLEMS

1. Section 5.1, Problem 8

Answer: There are $5!=120$ permutation matrices. $5!/ 2=60$ have det $=+1$.
A permutation matrix that needs four exchanges to reach the identity matrix:

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

2. Section 5.2, Problem 25

Answer:
a) If we use the big formula to find the determinant, picking an entry from B requires picking an entry from the zero block which results in zero. This leaves a pair of entries from A times a pair from D leading to $(\operatorname{det} A)(\operatorname{det} D)$.
b) and c)
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
3. Section 5.3, Problem 1

Answer:
a) $\operatorname{det} A=3, \operatorname{det} B_{1}=-6, \operatorname{det} B_{2}=3$. Therefore $x_{1}=-6 / 3=-2$ and $x_{2}=3 / 3=1$.
b) $\operatorname{det} A=4, \operatorname{det} B_{1}=3, \operatorname{det} B_{2}=-2, \operatorname{det} B_{3}=1$. Therefore $x_{1}=3 / 4$, $x_{2}=-1 / 2, x_{3}=1 / 4$.
4. Section 5.3, Problem 7

Answer: If all the cofactors are 0 , then $\operatorname{det} A=0$ (by the Cofactor Formula for determinants) and A has no inverse.
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ has no zero cofactors but it is not invertible.

