18.06 Spring 2006 - Problem Set 5

SOLUTIONS TO SELECTED PROBLEMS

1. Section 4.3, Problem 12

Answer:
a) $\mathbf{a}^{T} \mathbf{a}=m, \mathbf{a}^{T} \mathbf{b}=b_{1}+\ldots+b_{m}$. Therefore $\mathbf{a}^{T} \mathbf{a} \hat{\mathbf{x}}=m \hat{\mathbf{x}}=b_{1}+\ldots+b_{m}$ and $\hat{\mathbf{x}}$ is the mean of the b 's.
b) $\mathbf{e}=\mathbf{b}-\hat{\mathbf{x}} \mathbf{a},\|\mathbf{e}\|^{2}=\sum_{i=1}^{m}\left(b_{i}-\hat{\mathbf{x}}\right)^{2}$.
c) $\mathbf{p}=(3,3,3), \mathbf{e}=(-2,-1,3), \mathbf{p}^{T} \mathbf{e}=0 . P=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
2. Section 4.3, Problem 17

Answer:
$\left[\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{c}C \\ D\end{array}\right]=\left[\begin{array}{c}7 \\ 7 \\ 21\end{array}\right]$.
The solution $\hat{\mathbf{x}}\left[\begin{array}{l}9 \\ 4\end{array}\right]$ comes from $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$.
3. Section 4.3, Problem 27

Answer: $\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{c}C \\ D \\ E\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 4\end{array}\right]$ has $A^{T} A=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$,
$A^{T} \mathbf{b}=\left[\begin{array}{c}8 \\ -2 \\ -3\end{array}\right],\left[\begin{array}{c}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ \frac{-3}{2}\end{array}\right]$.
At $(x, y)=(0,0)$, the best plane $2-x-\frac{3}{2} y$ has height $C=2$ which is the average of $0,1,3,4$.

4. Section 4.4, Problem 7

Answer: If Q has orthonormal columns the least squares solution to $Q^{T} Q \hat{\mathbf{x}}=$ $Q^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=Q^{T} \mathbf{b}$.
5. Section 4.4, Problem 24

Answer:
a) One basis for \mathbf{S} is $\mathbf{v}_{1}=(1,-1,0,0), \mathbf{v}_{2}=(1,0,-1,0), \mathbf{v}_{3}=(1,0,0,1)$.
b) A basis for \mathbf{S}^{\perp} is $(1,1,1,-1)$.
c) $\mathbf{b}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right) \mathbf{b}_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$. (\mathbf{b}_{2} is the projection of $(1,1,1,1)$ onto the basis vector of $\left.\mathbf{S}^{\perp}, \mathbf{b}_{1}=(1,1,1,1)-\mathbf{b}_{2}.\right)$
6. Section 5.1, Problem 3

Answer:
a) False; let $A=I$, the 2 by 2 identity.
b) True
c) False; let $A=I$, the 2 by 2 identity.
d) False; let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
7. Section 5.1, Problem 12

Answer: The correct $\operatorname{det} A^{-1}$ is
$\operatorname{det} \frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]=\left(\frac{1}{a d-b c}\right)^{2} \operatorname{det}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]=\frac{a d-b c}{(a d-b c)^{2}}=\frac{1}{a d-b c}$.
8. Section 5.1, Problem 28

Answer:
a) True; $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=0$.
b) False; let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. The product of the pivots is $1 \operatorname{but} \operatorname{det}(A)=-1$ because a row exchange was required.
c) False; let $A=2 I$ and $B=I$.
d) True; $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)$.
9. MATLAB

Answer: $\operatorname{prod}(\operatorname{diag}(\mathrm{A}))=\operatorname{det}($ original A$)$;
$\operatorname{sum}(\operatorname{diag}(A))=\operatorname{sum}(\operatorname{diag}($ original $A))$

