18.06 Spring 2006 - Problem Set 5

SOLUTIONS TO SELECTED PROBLEMS

1. Section 4.3, Problem 12

Answer:

a) $\mathbf{a}^T \mathbf{a} = m$, $\mathbf{a}^T \mathbf{b} = b_1 + \ldots + b_m$. Therefore $\mathbf{a}^T \mathbf{a} \mathbf{\hat{x}} = m \mathbf{\hat{x}} = b_1 + \ldots + b_m$ and $\mathbf{\hat{x}}$ is the mean of the *b*'s. b) $\mathbf{e} = \mathbf{b} - \mathbf{\hat{x}}\mathbf{a}$, $\|\mathbf{e}\|^2 = \sum_{i=1}^m (b_i - \mathbf{\hat{x}})^2$. c) $\mathbf{p} = (3, 3, 3)$, $\mathbf{e} = (-2, -1, 3)$, $\mathbf{p}^T \mathbf{e} = 0$. $P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

2. Section 4.3, Problem 17

Answer:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}.$$

The solution $\hat{\mathbf{x}} \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ comes from
$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}.$$

3. Section 4.3, Problem 27

Answer:
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \text{ has } A^T A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$

$$A^{T}\mathbf{b} = \begin{bmatrix} 8\\ -2\\ -3 \end{bmatrix}, \begin{bmatrix} C\\ D\\ E \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ \frac{-3}{2} \end{bmatrix}.$$

At (x, y) = (0, 0), the best plane $2 - x - \frac{3}{2}y$ has height C = 2 which is the average of 0, 1, 3, 4.

4. Section 4.4, Problem 7

Answer: If Q has orthonormal columns the least squares solution to $Q^T Q \hat{\mathbf{x}} = Q^T \mathbf{b}$ is $\hat{\mathbf{x}} = Q^T \mathbf{b}$.

5. Section 4.4, Problem 24

Answer:

- a) One basis for **S** is $\mathbf{v}_1 = (1, -1, 0, 0), \mathbf{v}_2 = (1, 0, -1, 0), \mathbf{v}_3 = (1, 0, 0, 1).$
- b) A basis for \mathbf{S}^{\perp} is (1, 1, 1, -1).

c) $\mathbf{b}_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}) \mathbf{b}_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}).$ (\mathbf{b}_2 is the projection of (1, 1, 1, 1) onto the basis vector of \mathbf{S}^{\perp} , $\mathbf{b}_1 = (1, 1, 1, 1) - \mathbf{b}_2.$)

6. Section 5.1, Problem 3

Answer:

- a) False; let A = I, the 2 by 2 identity.
- b) True
- c) False; let A = I, the 2 by 2 identity.

d) False; let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

7. Section 5.1, Problem 12

Answer: The correct $\det A^{-1}$ is

$$\det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \left(\frac{1}{ad - bc}\right)^2 \det \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{ad - bc}{(ad - bc)^2} = \frac{1}{ad - bc}$$

8. Section 5.1, Problem 28

Answer:

a) True; det(AB) = det(A)det(B) = 0.

b) False; let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The product of the pivots is 1 but det(A) = -1

because a row exchange was required.

- c) False; let A = 2I and B = I.
- d) True; det(AB) = det(A)det(B) = det(BA).

9. MATLAB

Answer: $\operatorname{prod}(\operatorname{diag}(A)) = \operatorname{det}(\operatorname{original} A);$

sum(diag(A)) = sum(diag(original A))