18.06 Spring 2006 - Problem Set 3

SOLUTIONS TO SELECTED PROBLEMS

1. Section 3.2, Problem 15

Answer: Suppose an m by n matrix has r pivots. The number of special solutions is $\mathbf{n}-\mathbf{r}$. The nullspace contains only $\mathbf{x}=\mathbf{0}$ when $\mathbf{r}=\mathbf{n}$. The column is space is all of \mathbb{R}^{m} when $\mathbf{r}=\mathbf{m}$.
2. Section 3.2, Problem 18

Answer: All points on the plane have the form:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

3. Section 3.2, Problem 23

Answer: $\left[\begin{array}{rrr}1 & 0 & -\frac{1}{2} \\ 1 & 3 & -2 \\ 5 & 1 & -3\end{array}\right]$
4. Section 3.2, Problem 25

Answer: $\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1\end{array}\right]$
5. Section 3.2, Problem 27

Answer: If nullspace $=$ column space then $n-r=r$ (there are r pivots). For $n=3,3=2 r$ is impossible.
6. Section 3.2, Problem 28

Answer: If $A B=0$ then the column space of B is contained in the nullspace of A. An example of such A, B is
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$
7. Section 3.3, Problem 8

Answer:
$A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 4 & 8 \\ 4 & 8 & 16\end{array}\right], B=\left[\begin{array}{ccc}2 & 6 & -3 \\ 1 & 3 & -\frac{3}{2} \\ 2 & 6 & -3\end{array}\right], M=\left[\begin{array}{cc}a & b \\ c & \frac{c b}{a}\end{array}\right]$
8. Section 3.3, Problem 17

Answer:
a) The j th column of $A B$ is A times the j th column of B. If column j of B is a combination of the previous columns of B then $A B$ will be a combination of the previous columns of $A B$.
b) $\operatorname{rank}\left(A_{1} B\right)=1$ for $A_{1}=I ; \operatorname{rank}\left(A_{2} B\right)=0$ for $A_{2}=0$ or $A_{2}=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$

9. Section 3.4, Problem 5

Answer: Elimination on the augmented matrix:

$$
\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
2 & 5 & -4 & b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & b_{2}-2 b_{1} \\
0 & 1 & 0 & b_{3}-4 b_{1}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}-b_{2}-2 b_{1}
\end{array}\right]
$$

This is solvable if $b_{3}=2 b_{1}+b_{2}$. If this condition holds, then $y=b_{2}-2 b_{1}$ and $x=b_{1}-2 y+2 z=b_{1}-2\left(b_{2}-2 b_{1}\right)+2 z=5 b_{1}-2 b_{2}+2 z . z$ is a free variable, so letting $z=0$, we get that the particular solution is $\left[\begin{array}{c}5 b_{1}-2 b_{2} \\ b_{2}-2 b_{1} \\ 0\end{array}\right]$ and the
special solution is $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
The complete solution is $\mathbf{x}=\left[\begin{array}{c}5 b_{1}-2 b_{2} \\ b_{2}-2 b_{1} \\ 0\end{array}\right]+z\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
10. Section 3.4, Problem 22

Answer: If $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions then we can find $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}$ such that $A \mathbf{x}_{\mathbf{1}}=\mathbf{b}$ and $A \mathbf{x}_{\mathbf{2}}=\mathbf{b}$. Then $\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{\mathbf{2}}$ is in the nullspace of A. We can add $\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{\mathbf{2}}$ to any solution of $A \mathbf{x}=\mathbf{B}$ to get a new solution; hence $A \mathrm{x}=\mathbf{B}$ cannot have exactly one solution.
$A \mathbf{x}=\mathbf{B}$ will have no solution if \mathbf{B} is not in the column space of A.
11. Section 3.4, Problem 24

Answer:
a) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1\end{array}\right]$
c) $A=0$ or any matrix with $r<m$ and $r<n$.
d) Any invertible matrix.
12. Section 3.4, Problem 31

Answer:
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right]$ or any 3×2 matrix with rank 2 and second column $=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
B cannot exist. 2 equations in 3 unknowns cannot have a unique solution.
13. Section 3.4, Problem 33

Answer: $A=\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]$.
The particular solution is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. So we have $A\left[\begin{array}{l}1 \\ 0\end{array}\right]=$ first column of $A=$
$\left[\begin{array}{l}1 \\ 3\end{array}\right]$. The special solution, $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, is in the nullspace of A.
This gives $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=$ the second column of $A=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

