### 18.06 Spring 2006 - Problem Set 2

## SOLUTIONS TO SELECTED PROBLEMS

1. Section 2.6, Problem 13

Answer: $A=\left[\begin{array}{llll}a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{cccc}a & a & a & a \\ & b-a & b-a & b-a \\ & & c-b & c-b \\ & & & \\ & & & \\ & & & \\ & & & \end{array}\right]$
Need $a \neq 0, b \neq a, c \neq b, d \neq c$.
2. Section 2.6, Problem 16

Answer: $L \mathbf{c}=\mathbf{b}:\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] \mathbf{c}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ gives $\mathbf{c}=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$.
$U \mathbf{x}=\mathbf{c}:\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$ gives $\mathbf{x}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$.
$A=L U=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$.
3. Section 2.6, Problem 28

Answer: $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & c & 1 \\ 0 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & c-6 & 1 \\ 0 & 1 & 1\end{array}\right]$.
$c=6$ and $c=7$ makes $L U$ impossible because $c=6$ needs a row exchange and $c=7$ will have only 2 pivots.
4. Section 2.7, Problem 7

Answer:
a) False
b) False
c) True
d) True
5. Section 2.7, Problem 11

Answer: $P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] ; P_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], P_{2}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Multiplying $A$ on the right by $P_{2}$ exchanges the columns of $A$.
6. Section 2.7, Problem 13

Answer: $P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ or its transpose have $P^{3}=I$.
$\widehat{P}=\left[\begin{array}{ll}1 & 0 \\ 0 & P\end{array}\right]$ for the previous $P$ has $\widehat{P}^{4} \neq I$.
7. Section 2.7, Problem 17

Answer:
a) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
b) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
c) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ has $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
8. Section 2.7, Problem 19

Answer:
a) $\left(R^{T} A R\right)^{T}=R^{T}\left(R^{T} A\right)^{T}=R^{T} A^{T}\left(R^{T}\right)^{T}=R^{T} A R . R^{T} A R$ is $n \times n$.
b) $\left(R^{T} R\right)_{j j}=($ column $j$ of $R) \cdot($ column $j$ of $R)=$ length squared of column $j$.
9. Section 3.1, Problem 10

Answer:
(a), (d), (e) are the only ones that are subspaces.
10. Section 3.1, Problem 19

Answer:

The column space of $A$ is the $x$ - axis $=$ all vectors of the form $(x, 0,0)$.
The column space of $B$ is the $x y$-plane $=$ all vectors of the form $(x, y, 0)$.
The column space of $C$ is the line vectors of the form $(x, 2 x, 0)$.
11. Section 3.1, Problem 27

Answer:
a) False; $\mathbf{0} \in \mathbf{C}(A)$, hence the set of vectors not in $\mathbf{C}(A)$ will not contain $\mathbf{0}$ and is not a subspace.
b) True
c) True
d) False; if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $\mathbf{C}(A)=\mathbb{R}^{2}$ and $\mathbf{C}(A-I)=\mathbf{0}$.

