18.06 Spring 2006 - Problem Set 1

SOLUTIONS

1. Section 2.2, Problem 19

Answer:
a) $t(x, y, z)+(1-t)(X, Y, Z)$ is a solution for $0 \leq t \leq 1$
b) The planes also meet on the line through the two points.
2. Section 2.2, Problem 21

Answer: After elimination, the equations are $2 x+y=0, \frac{3}{2} x+z=0$, $\frac{4}{3} z+t=0, \frac{5}{4} t=5$. The pivots are $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ and the solution is $t=4, z=-3$, $y=2, x=-1$.
3. Section 2.3, Problem 17

Answer: The linear system is:

$$
\begin{gathered}
a+b+c=4 \\
a+2 b+4 c=8 \\
a+3 b+9 c=14
\end{gathered}
$$

which gives $a=2, b=1, c=1$.
4. Section 2.4, Problem 24

Answer:
a) $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has $A^{2}=0$.
b) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ has $A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $A^{3}=0$.
5. Section 2.5, Problem 9

Answer: Let P be the permutation matrix that swaps the first two rows of a matrix. Then $B=P A$ and $B^{-1}=A^{-1} P^{-1}=A^{-1} P=A^{-1}$ with the first two columns switched.
6. Section 2.5, Problem 28

Answer:

$$
\begin{aligned}
& A \\
& {\left[\begin{array}{ll}
I
\end{array}\right]=\left[\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
2 & 2 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & 1 \\
0 & 2 & 1 & 0
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{llll}
1 & 0 & \frac{-1}{2} & \frac{1}{2} \\
0 & 1 & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]}
\end{aligned}
$$

7. Section 2.5, Problem 29

Answer:
a) True; A can have at most 3 pivots
b) False; the matrix of all 1's is not invertible
c) True; $\left(A^{-1}\right)^{-1}=A$
d) True; $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
8. Section 2.5, Problem 30

Answer: $c=0$ has a column of 0 's; $c=2$ has two equal rows; $c=7$ has two equal columns.

9. MATLAB

Answer: The mean of the square of product of the pivots approaches $n!$; so for $n=3$, the mean approaches 6 .

Code:
for $i=1: 1000$
$A=\operatorname{randn}(3)$;
$A(2,:)=A(2,:)-(A(2,1) / A(1,1)) * A(1,:) ;$
$\mathrm{A}(3,:)=\mathrm{A}(3,:)-(\mathrm{A}(3,1) / \mathrm{A}(1,1)) * \mathrm{~A}(1,:)$;
$\mathrm{A}(3,:)=\mathrm{A}(3,:)-(\mathrm{A}(3,2) / \mathrm{A}(2,2)) * \mathrm{~A}(2,:)$;
pivots=diag(A);
$\mathrm{v}(\mathrm{i})=\operatorname{prod}(\text { pivots })^{\wedge} 2$;
end
mean(v)

