Grading

Your PRINTED name is: __ 1

Please circle your recitation:

1) M 2 2-131 A. Chan 2-588 3-4110 alicec
2) M 3 2-131 A. Chan 2-588 3-4110 alicec
3) M 3 2-132 D. Testa 2-586 3-4102 damiano
4) T 10 2-132 C.I. Kim 2-273 3-4380 ikim
5) T 11 2-132 C.I. Kim 2-273 3-4380 ikim
6) T 12 2-132 W.L. Gan 2-101 3-3299 wlgan
7) T 1 2-131 C.I. Kim 2-273 3-4380 ikim
8) T 1 2-132 W.L. Gan 2-101 3-3299 wlgan
9) T 2 2-132 W.L. Gan 2-101 3-3299 wlgan

1 (37 pts.) (a) (16 points) Find the three eigenvalues and all the real eigenvectors of A. It is a symmetric Markov matrix with a repeated eigenvalue.

$$
A=\left[\begin{array}{ccc}
\frac{2}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{2}{4}
\end{array}\right]
$$

(b) (9 points) Find the limit of A^{k} as $k \rightarrow \infty$. (You may work with $A=S \Lambda S^{-1}$ without computing every entry.)
(c) (6 points) Choose any positive numbers r, s, t so that

$$
\begin{array}{ll}
A-r I & \text { is positive definite } \\
A-s I & \text { is } \\
A-t I & \text { is } \\
\text { negative definite }
\end{array}
$$

(d) (6 points) Suppose this A equals $B^{\mathrm{T}} B$. What are the singular values of B ?

2 (41 pts.) (a) (14 points) Complete this 2 by 2 matrix A (depending on a) so that its eigenvalues are $\lambda=1$ and $\lambda=-1$:

$$
A=\left[\begin{array}{ll}
a & 1 \\
&
\end{array}\right]
$$

(b) (9 points) How do you know that A has two independent eigenvectors?
(c) (9 points) Which choices of a give orthogonal eigenvectors and which don't?
(d) (9 points) Explain why any two choices of a lead to matrices A that are similar (with the same Jordan form).

3 (22 pts.) Suppose the 3 by 3 matrix A has independent eigenvectors in $A x_{1}=\lambda_{1} x_{1}$, $A x_{2}=\lambda_{2} x_{2}, A x_{3}=\lambda_{3} x_{3}$. (Those λ 's might not be different.)
(a) (11 points) Describe the general form of every solution $u(t)$ to the differential equation $\frac{d u}{d t}=A u$. (The answer $e^{A t} u(0)$ does not use the λ 's and x 's.)
(b) (11 points) Starting from any vector u_{0} in \mathbf{R}^{3}, suppose $u_{k+1}=A u_{k}$. What are the conditions on the x 's and λ 's to guarantee that $u_{k} \rightarrow 0$ (as $k \rightarrow \infty)$? Why?

